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THE BOOLE POLYNOMIALS ASSOCIATED

WITH THE p-ADIC GAMMA FUNCTION

Ugur Duran and Mehmet Acikgoz

Abstract. We set some correlations between Boole polynomials and p-adic
gamma function in conjunction with p-adic Euler contant. We develop diverse
formulas for p-adic gamma function by means of their Mahler expansion and
fermionic p-adic integral on Zp. Also, we acquire two fermionic p-adic integrals
of p-adic gamma function in terms of Boole numbers and polynomials. We then
provide fermionic p-adic integral of the derivative of p-adic gamma function
and a representation for the p-adic Euler constant by means of the Boole
polynomials. Furthermore, we investigate an explicit representation for the
aforesaid constant covering Stirling numbers of the first kind.

1. Introduction

Let N := {1, 2, 3, · · · } and N0 = N∪{0}. Throughout this paper, Z denotes the
set of integers, R denotes the set of real numbers and C denotes the set of complex
numbers. Let p be chosen as an odd fixed prime number. The symbols Zp, Qp and
Cp denote the ring of p-adic integers, the field of p-adic numbers and the completion
of an algebraic closure of Qp, respectively. The normalized absolute value according
to the theory of p-adic analysis is given by |p|p = p−1 (for details [1–12]; see also
the related references cited therein).

The fermionic p-adic integral on Zp of a function

f ∈ C(Zp) = {f | f : Zp → Zp be a continuous function}

is defined [5,12] as follows:

(1.1)

∫

Zp

f(x) dµ−1(x) = lim
N→∞

1

pN

pN
−1∑

k=0

(−1)kf(k).
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By (1.1), the following integral equation holds true, see [1,2,5–7]:

(1.2)

∫

Zp

f(x + 1) dµ−1(x) +

∫

Zp

f(x) dµ−1(x) = 2f(0),

which intensely holds usability in introducing assorted generalizations of many spe-
cial polynomials such as Euler, Genocchi, Frobenius–Euler and Changhee polyno-
mials, see [1,2,4–7,12].

The familiar Boole polynomials Bln(x) of the first kind are defined by means
of the following generating function [7]):

(1.3)

∞∑

n=0

Bln(x | ω)
tn

n!
=

1

1 + (1 + t)ω
(1 + t)x =

∫

Zp

(1 + t)x+ωydµ−1(y).

When ω = 1, we have Bln(x | 1) := 2−1 Chn(x) which are the Changhee polynomi-
als given by the following generating function to be [6]

(1.4)

∞∑

n=0

Chn(x)
tn

n!
=

2

2 + t
(1 + t)x.

In the case x = 0 in the (1.4), one can get Chn(0) := Chn standing for n-th
Changhee number [3,8].

The Boole polynomials of the first kind can be represented by

(1.5) Bln(x | ω) = 2−1
∫

Zp

(x + ωy)n dµ−1(y),

where (x)n is a falling factorial given by [1–3,8,9]

(1.6) (x)n = x(x − 1)(x − 2) · · · (x − n + 1).

In the special case, Bln(0 | ω) := Bln(ω) is called n-th Boole number.
The Boole polynomials of the second kind are defined by means of the following

fermionic p-adic integral, see [6]:

(1.7)

∞∑

n=0

B̂ln(x | ω)
tn

n!
=

1

2

∫

Zp

(1 + t)x−ωydµ−1(y) =
(1 + t)ω

1 + (1 + t)ω
(1 + t)x.

which also means

(1.8) B̂ln(x | ω) = 2−1
∫

Zp

(x − ωy)ndµ−1(y).

When x = 0, we have B̂ln(0 | ω) := B̂ln(ω) which is called the Boole numbers of
the second kind [6].

In recent years, the Boole and the Changhee polynomials with their several
generalizations studied and developed by a lot of mathematicians possess various
applications in p-adic analysis, see [2,4,6,7] and also references cited therein.

Formula (1.6) satisfies the following identity:

(1.9) (x)n =

n∑

k=0

S1(n, k)xk.
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where S1(n, k) denotes the Stirling numbers of the first kind [1,2,4,6,7].
The following relation holds true for n > 0:

∫

Zp

(
x + ωy

n

)
dµ−1(y) =

n∑

m=0

ωmS1(n, m)Em

( x

ω

)
,

where Em(x/ω) denotes m-th Euler polynomials with the value x/ω defined by [6]

∞∑

n=0

En(y)
tn

n!
=

∫

Zp

(x + y)ndµ−1(x) =
2

et + 1
eyt.

Note that when y = 0, we have En(0) := En called n-th Euler number (see [6]).
In this paper, we investigate several relations for p-adic gamma function by

means of their Mahler expansion and fermionic p-adic integral on Zp. We also
derived two fermionic p-adic integrals of p-adic gamma function in terms of Boole
polynomials and numbers. Moreover, we discover fermionic p-adic integral of the
derivative of p-adic gamma function. We acquire a representation for the p-adic
Euler constant by means of the Boole polynomials. We finally develop a novel,
explicit and interesting representation for the p-adic Euler constant covering Stirling
numbers of the first kind.

2. The Boole polynomials related to p-adic gamma function

Throughout this paper, we suppose that t ∈ Cp with |t|p < p1/1−p. In this part,
we perform to derive some relationships among the two types of Boole polynomials,
p-adic gamma function and p-adic Euler constant by making use of the Mahler
expansion of the p-adic gamma function.

The p-adic gamma function (see [3,4,8–11]) is given by

Γp(x) = lim
n→x

(−1)n
∏

j<n
(p,j)=1

j (x ∈ Zp),

where n approaches x through positive integers.
The p-adic Euler constant γp is given by

(2.1) γp := −
Γ′

p(1)

Γp(0)
= Γ′

p(1) = −Γ′

p(0).

The p-adic gamma function in conjunction with its various generalizations and p-
adic Euler constant have been investigated and studied by many mathematicians,
[3,4,8–11]; see also the references cited in each of these earlier works.

For x ∈ Zp, the symbol
(

x
n

)
is given by

(
x

0

)
= 1 and

(
x

n

)
=

x(x − 1) · · · (x − n + 1)

n!
(n ∈ N).

Let x ∈ Zp and n ∈ N. The functions x →
(

x
n

)
form an orthonormal base of

the space C(Zp → Cp) with respect to the Euclidean norm | · |∞. The mentioned
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orthonormal base satisfy the formula

(2.2)

(
x

n

)
′

=
n−1∑

j=0

(−1)n−j−1

n − j

(
x

j

)
(see [9] and [11]).

Kurt Mahler, German mathematician, provided an extension for continuous maps of
a p-adic variable using the special polynomials as binomial coefficient polynomial [9]
in 1958 as follows.

Theorem 2.1. [9] Every continuous function f : Zp → Cp can be written in

the form

f(x) =

∞∑

n=0

an

(
x

n

)

for all x ∈ Zp, where an ∈ Cp and an → 0 as n → ∞.

The base {
(

∗

n

)
: n ∈ N} is termed as Mahler base of the space C(Zp → Cp), and

the components {an : n ∈ N} in f(x) =
∑

∞

n=0 an

(
x
n

)
are called Mahler coefficients

of f ∈ C(Zp → Cp). The Mahler expansion of the p-adic gamma function Γp and
its Mahler coefficients are given in [11] as follows.

Proposition 2.1. For x ∈ Zp, let Γp(x + 1) =
∑

∞

n=0 an

(
x
n

)
be Mahler series

of Γp. Then its coefficients satisfy the following expression:

∑

n>0

(−1)n+1an
xn

n!
=

1 − xp

1 − x
exp

(
x +

xp

p

)
.

The fermionic p-adic integral on Zp of the p-adic gamma function via Eq. (1.5)
and Proposition 2.1 is as follows.

Theorem 2.2. The following identity holds true for n ∈ N:
∫

Zp

Γp(ωx + 1) dµ−1(x) = 2
∞∑

n=0

an

n!
Bln(ω),

where an is given by Proposition 2.1.

Proof. For x, ω ∈ Zp, by Proposition 2.1, we get
∫

Zp

Γp(ωx + 1) dµ−1(x) =
∞∑

n=0

an

∫

Zp

(
ωx

n

)
dµ−1(x)

and using (1.5), we acquire
∫

Zp

Γp(ωx + 1) dµ−1(x) =

∞∑

n=0

2an

n!
Bln,1(ω),

which gives the asserted result. �

We here present another fermionic p-adic integral of the p-adic gamma function
related to the Boole polynomials as follows.
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Theorem 2.3. Let x, y, ω ∈ Zp. We have

(2.3)

∫

Zp

Γp(x + ωy + 1) dµ−1(y) = 2

∞∑

n=0

an

n!
Bln(x | ω),

where an is given by Proposition 2.1.

Proof. For x, y, ω ∈ Zp, by the relation
(

x+ωy
n

)
= (x+ωy)n

n! and Proposition
2.1, we get

∫

Zp

Γp(x + ωy + 1) dµ−1(y) =

∫

Zp

∞∑

n=0

an
(x + ωy)n

n!
dµ−1(y)

=

∞∑

n=0

an
1

n!

∫

Zp

(x + ωy)ndµ−1(y),

which is the desired result (2.3) via (1.3). �

A relation between Γp(x) and B̂ln(x | ω) is stated by the following theorem.

Theorem 2.4. For x, y, ω ∈ Zp, we have

∫

Zp

Γp(x − ωy + 1) dµ−1(y) = 2

∞∑

n=0

an
B̂ln(x | ω)

n!
,

where an is given by Proposition 2.1.

Proof. For x, y, ω ∈ Zp, by the relation
(

x−ωy
n

)
= (x−ωy)n

n! and Proposition
2.1, we get

∫

Zp

Γp(x − ωy + 1) dµ−1(y) =

∫

Zp

∞∑

n=0

an
(x − ωy)n

n!
dµ−1(y)

=

∞∑

n=0

an
1

n!

∫

Zp

(x − ωy)ndµ−1(y),

which is the desired result thanks to (1.8). �

A consequence of Theorem 2.4 is given by the following corollary.

Corollary 2.1. Upon setting x = 0 in Theorem 2.4 gives the following relation

for Γp and B̂ln(ω):

∫

Zp

Γp(−ωy + 1) dµ−1(y) = 2

∞∑

n=0

an
B̂ln(ω)

n!
,

where an is given by Proposition 2.1.

Here is the fermionic p-adic integral of the derivative of the p-adic gamma
function.
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Theorem 2.5. For x, y, ω ∈ Zp, we have

∫

Zp

Γ′

p(x + ωy + 1) dµ−1(y) = 2
∞∑

n=0

n−1∑

j=0

an
(−1)n−j−1 Blj(x | ω)

(n − j)j!
.

Proof. In view of Proposition 2.1, we obtain
∫

Zp

Γ′

p(x + ωy + 1) dµ−1(y) =

∫

Zp

∞∑

n=0

an

(
x + ωy

n

)
′

dµ−1(y)

=
∞∑

n=0

an

∫

Zp

(
x + ωy

n

)
′

dµ−1(y)

and using (2.2), we derive

∫

Zp

Γ′

p(x + ωy + 1) dµ−1(y) =

∞∑

n=0

n−1∑

j=0

an
(−1)n−j−1

n − j

∫

Zp

(
x + ωy

j

)
dµ−1(y)

= 2

∞∑

n=0

n−1∑

j=0

an
(−1)n−j−1

n − j

Blj(x | ω)

j!
. �

The immediate result of Theorem 2.5 is given as follows.

Corollary 2.2. For y ∈ Zp, we have

(2.4)

∫

Zp

Γ′

p(ωy + 1) dµ−1(y) = 2

∞∑

n=0

n−1∑

j=0

an
(−1)n−j−1 Blj(ω)

(n − j)j!
.

We now provide a new and interesting representation of the p-adic Euler con-
stant by means of Boole polynomials of the second kind.

Theorem 2.6. We have

(2.5) γp =

∞∑

n=0

n−1∑

j=0

an(−1)n−j Blj(ω − 1 | ω) − Blj(−1 | ω)

(n − j)j!
.

Proof. Taking f(y) = Γ′

p(ωy) in (1.2) yields the following result
∫

Zp

Γ′

p(ωy + ω − 1 + 1) dµ−1(y) +

∫

Zp

Γ′

p(ωy) dµ−1(y) = 2Γ′

p(0).

Using (2.1), (2.4) and Theorem 2.5 along with some basic calculations, we have

2

∞∑

n=0

n−1∑

j=0

an
(−1)n−j−1 Blj(ω − 1 | ω)

(n − j)j!
+2

∞∑

n=0

n−1∑

j=0

an
(−1)n−j−1 Blj(−1 | ω)

(n − j)j!
= −2γp,

which implies the asserted result. �

We give the following explicit formula for the p-adic Euler constant.
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Theorem 2.7. The following explicit formula is valid:

γp =

∞∑

n=0

n−1∑

j=0

an

(n − j)j!

∞∑

m=0

(−1)m+n−j

·
n∑

k=0

S1(n, k)((−1 − ωm)k − (−1 − ω − ωm)k).

Proof. By (1.7), we get
∞∑

n=0

B̂ln(x | ω)
tn

n!
=

1

1 + (1 + t)ω
(1 + t)x+ω =

∞∑

m=0

(−1)m(1 + t)x+ω+ωm

=

∞∑

m=0

(−1)m(1 + t)x+ω+ωm =

∞∑

m=0

(−1)m
∞∑

n=0

(
x + ω + ωm

n

)
tn

=

∞∑

n=0

( ∞∑

m=0

(−1)m(x + ω + ωm)n

)
tn

n!
,

which gives, from (1.9), that

B̂ln(x | ω) =

∞∑

m=0

(−1)m
n∑

k=0

S1(n, k)(x + ω + ωm)k.

In view of (1.5) and (1.8), we easily obtain that

B̂ln(x | ω) = Bln(x | −ω).

So, we derive that

Bln(x | ω) =

∞∑

m=0

(−1)m
n∑

k=0

S1(n, k)(x − ω − ωm)k.

Thus, we have

(2.6) Bln(−1 | ω) =

∞∑

m=0

(−1)m
n∑

k=0

S1(n, k)(−1 − ω − ωm)k

and

(2.7) Bln(ω − 1 | ω) =
∞∑

m=0

(−1)m
n∑

k=0

S1(n, k)(−1 − ωm)k.

By combining (2.5), (2.6) and (2.7), we arrive at the desired result. �

3. Conclusions and Observations

In this work, we first have handled some multifarious relations for the p-adic
gamma function and the Boole polynomials of both sides. We also have acquired
the fermionic p-adic integral of the derivative of p-adic gamma function. We then
have obtained a new representation for the p-adic Euler constant via the Boole
polynomials of both kinds. Lastly, we have investigated an interesting identity for
the mentioned constant.
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