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1. Introduction
The calcretes are terrestrial carbonates (predominantly 
CaCO3) that accumulate and/or replace the host 
materials in near-surface settings and occur in a variety of 
morphologies (Wright and Tucker, 1991; Kelly et al., 2000; 
Alonso-Zarza and Wright, 2010). They are often associated 
with authigenic clays as a minor constituent, generally 
including palygorskite and sepiolite (Wang et al., 1994; 
Verrecchia and Le Coustumer, 1996; Garcia-Romero et 
al., 2004; Silva et al., 2018; Elidrissi et al., 2018). There are 
two major groups of calcretes regarding their origin: (i) the 
pedogenic calcretes, generated by soil-forming processes 
and characterized by abundant β-fabric (biogenic) features 
(Klappa, 1983; Shankar and Achyuthan, 2007; Singh et al., 
2007; Zamanian et al., 2016; Eren et al., 2018), and (ii) the 

groundwater or nonpedogenic calcretes, precipitated from 
groundwater by evaporation in the capillary zone (Goudie, 
1973; Nash and McLaren, 2003) or in the phreatic zone 
(Mann and Horwitz, 1979). Calcretes are widely accepted 
as indicators of arid and semiarid climates (Anand et al., 
1997; Alonso-Zarza and Wright, 2010; Achyuthan et al., 
2012). A great number of studies exist on the different 
aspects of calcretes in the world and also in Turkey, 
including isotopic studies (e.g., Cerling, 1984; Andrews 
et al., 1998; Chiquet et al., 2000; Leone et al., 2000; 
Srivastava, 2001; Achyuthan, 2003; Nash and McLaren, 
2003; Dworkin et al., 2005; Durand et al., 2006; Kovda et 
al., 2006; Achyuthan et al., 2007; Zhou and Chafetz, 2009; 
Gallala et al., 2010; Meléndez et al., 2011; Horn et al., 2013; 
Mortazavi et al., 2013; Elidrissi et al., 2017; literature from 
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Turkey given in Table 1). However, comparative isotopic 
studies on calcretes are very limited and include worldwide 
comparisons (Salomons et al., 1978; Talma and Netterberg, 
1983; Eren, 2011). The isotope values of Quaternary 
calcretes from both Adana and Mersin provinces were 
previously studied by Kaplan et al. (2014) and Eren et al. 
(2008). This study aims to compare isotopic compositions 
of calcretes in these provinces and also attempts to 
discuss the climatic controlling factors and environmental 
conditions affecting the formation of “calcrete profiles” 
(term first used by Meléndez et al. (2011) for the Ebro 
Basin calcretes and Eren et al. (2018) for the Adana and 
Mersin calcretes), which has not been undertaken to date. 

Furthermore, these new regional isotopic comparisons 
and interpretations will guide future investigations of 
similar geographic settings concerning paleoclimate and 
the environmental conditions in the Mediterranean and 
worldwide.

2.  Geological setting
This study concerns the Neogene Adana basin developed 
within the central Taurides of SE Turkey and comprises 
two sampling sites in Adana and Mersin provinces (Figure 
1). The basin infill contains Tertiary and Quaternary 
sedimentary rocks and sediments unconformably overlying 
the pre-Miocene basement rocks of clastics, carbonates, 

Table 1. Literature summary of the calcretes in Turkey.

Reference Subject Location

Kapur et al., 1987 Soil-calcrete (caliche) and its relationship with geomorphology Adana
Özer et al., 1989 ESR and TL age determination of caliche nodules Çukurova/Adana
Kapur et al., 1990 Geomorphology and pedogenic evolution of Quaternary calcretes Adana
Kapur et al., 1993 Soil stratigraphy and Quaternary caliche Misis/Adana
Atalay, 1996 Paleosols as indicators of the climatic changes South Anatolia
Atabey et al., 1998 Sedimentology of caliche (calcrete) occurrences Kırşehir
Kapur et al., 2000 Carbonate pools in soils Mediterranean area
Eren, 2007 Genesis of tepees in the Quaternary hardpan calcretes Mersin
Eren et al., 2008 Quaternary Calcrete Development Mersin
Kadir and Eren, 2008 Genesis of clay minerals in Quaternary caliches Mersin
Kadir et al., 2010 Dolocretes and associated palygorskite Çanakkale

Eren and Hatipoğlu-Bağcı, 2010 Karst surface features of the hard laminated crust (caliche 
hardpan) Mersin

Eren, 2011 Stable isotope geochemistry of Quaternary calcretes Mersin
Küçükuysal et al., 2011 ESR dating of calcrete nodules Bala/Ankara

Kaplan et al., 2013 Mineralogical, geochemical, and isotopic characteristics of 
Quaternary calcretes Adana

Kadir et al., 2014 Genesis of Late Miocene-Pliocene lacustrine palygorskite and 
calcretes Kırşehir

Kaplan et al., 2014 Pedogenic palygorskite associated with Quaternary calcretes Adana
Küçükuysal et al., 2013 Multiproxy evidence of Mid-Pleistocene dry climates in calcretes Ankara

Küçükuysal and Kapur, 2014 Mineralogical, geochemical, and micromorphological evaluation 
of the Plio-Quaternary paleosols and calcretes Karahamzalı/Ankara

Küçükuysal, 2016
Mineralogical, micromorphological, geochemical, and stable 
isotopic compositions, and radiocarbon ages of the Late 
Pleistocene calcretes   

Gölbaşı Basin/Central Anatolia

Gürel and Özcan, 2016 Paleosol and dolocrete associated clay mineral Tuzgölü/Ankara
Kadir et al., 2018 Genesis of palygorskite and calcrete in Pliocene Basin Eskişehir
Eren et al., 2018 Biogenic (β-fabric) features in the hard laminated crusts Adana, Mersin

Modified from Eren et al. (2018).
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and ophiolites (Figures 2 and 3; Schmidt, 1961; Yalçın 
and Görür, 1983; Yetiş, 1988; Yetiş et al., 1995; Darbaş 
et al., 2008). The Tertiary units are mainly represented 
by the Kuzgun and Handere Formations in Mersin and 
Adana provinces, respectively. The Kuzgun Formation, 
deposited during the late Miocene (Tortonian), comprises 
predominantly shallow marine mudstones and sandstones 
at the lower to middle part and fluvial deposits consisting 
mainly of reddish-brown mudstones of overbank deposits 
intercalated with cross-bedded sandstones of point bar 
and channel deposits at the upper part (Eren et al., 2008). 
The Handere Formation of the Messinian to Pliocene 
age is made up of predominantly mudstones associated 
with conglomerates, sandstones, and gypsum lenses of 
lagoonal, shallow marine, and fluvial environments (Yetiş 
et al., 1995; Gürbüz, 1999). The Quaternary covers recent 
alluvium, alluvial terraces, colluvial red soils, and/or red 
soils and hardpan calcretes. 

Calcretes are widely available on and/or within layers 
of the Kuzgun and Handere Formations in Mersin and 
Adana provinces, respectively (Figure 4; Eren et al., 2008; 
Kaplan et al., 2013). They have also been recognized in/
on the Pleistocene glacis (mass flow or mud flow) terraces 
(Kapur et al., 1993; Kaplan et al., 2013) of Adana province 
and the Quaternary colluvial red soils of Mersin province 
(Eren et al., 2008). The Pleistocene ages of the calcretes 
of the area dated from 250 to 782 ka BP were determined 
by Özer et al. (1989), whereas the early Holocene to 
Pleistocene ages were based on the field observations of 

Erol (1981, 1984), Atalay (1996), Eren et al. (2008), and 
Kaplan et al. (2013) studies. Furthermore, Küçükuysal 
et al. (2011) and Küçükuysal (2016) provided Middle to 
Late Pleistocene age for calcretes determined by ESR and 
radiocarbon techniques in the Bala and Gölbaşı Basin/
Ankara regions of central Turkey, respectively. 

Calcrete profiles often reflect maturation in the soil 
profile development and consist mainly of the hard 
laminated crust with a thickness of about 1.5 m at the 
top, gradually intergrading with depth into the 1.5–2 m 
thick nodular and/or tubular/columnar (term first used 
by Kapur et al., 1990) horizon (Figure 4; Eren et al., 2008; 
Kaplan et al., 2013). In some cases, fracture infills are 
also observed in the nodular-tubular horizons. The hard 
laminated crust spreads in large areas unconformably 
overlying the different layers of the Handere and Kuzgun 
Formations and outcrops as an undulating crust on the 
small ridges and highs in low-lying areas (20 to 250 m). The 
nodular and/or tubular/columnar horizon has developed 
predominantly within the mudstones of the Kuzgun and 
Handere Formations as scattered/discreet white mottlings 
associated with fracture infills.

3. Materials and methods
A total of 164 calcrete samples were collected from 24 
measured sections in Adana and Mersin provinces. For 
isotope analysis, 24 calcrete samples were selected from the 
hard laminated crust (n = 25) and nodular and/or tubular/
columnar horizon (n = 19). Isotopic measurements were 

Figure 1. Location map illustrating parts of the study area in the Adana Basin (modified from Yalçın and Görür, 1983).
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Figure 2. Geological maps of the studied areas: (a) the Adana region (modified from Yetiş, 1988); (b) the Mersin area (Eren et al., 2004).
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made on carbon dioxide (CO2) released after the reaction 
of approximately 5 mg of powder samples with 100% 
phosphoric acid (H3PO4) at 50 °C using a Finnigan MAT 
252 mass spectrometer at ISO Analytical Laboratories 
(Cheshire, UK). The mass spectrometer was calibrated 
using NBS 18 and NBS 19 standards. The isotopic results 
were reported as δ values in parts per mil relative to the 
Pee Dee Belemnite (PDB) standard. Analytical detection 
limits at laboratory conditions were ±0.05‰ for δ18O and 
± 0.02‰ for δ13C. 

The analytical results were cross-plotted as δ18O versus 
δ13C and analyzed using multivariate statistical analysis to 
illustrate separation in the samples. Hierarchical clustering 

analysis (HCA) methods were used for all samples, and the 
Ward method revealed more meaningful cluster structures 
(Ward, 1963). The dendrograms were drawn over the 
statistical application and the Ward method in turn 
minimizing intracluster differences yielded the correct 
results. The two-dimensional Pythagorean theorem of the 
Euclidean distance was used for the calculations (Kaufman 
and Rousseeuw, 2009).

4. Results
Isotope values of the calcretes are listed in Table 2, where 
samples of the Mersin calcretes have δ18O and δ13C values 
ranging from –4.31‰ to –5.84‰ and from –8.40‰ to 

Figure 3. Generalized stratigraphic column for the studied areas (modified from Eren et al., 2018).
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–9.65‰ PDB, respectively. The Adana calcretes have PDB 
values of δ18O ranging from –3.76‰ to –5.74‰ and of 
δ13C ranging from –7.71‰ to –10.01‰. In this context, 
the δ18O values of calcretes vary in a wide range in respect 
to the δ13C values in the Mersin area, whereas the Adana 
calcretes have δ18O and δ13C values varying almost in the 
same range (Figure 5). Within this scope, both cross-plot 
and hierarchical cluster analyses of δ18O and δ13C values 
show two distinct calcrete groups referring to Adana and 
Mersin provinces (Figures 5 and 6). Consequently, the 
hierarchical cluster analysis revealed that the fracture 
infills, separately sampled in the field, are associated with 
and appear to be a subgroup of the calcrete nodules/tubes 
of the columnar horizon (Figure 6).

5. Discussion  
The isotope values of the calcrete samples collected from 
the hard laminated crust and the nodular and/or tubular 
horizon, including the fracture infills, are in the range of 
δ18O and δ13C for the pedogenic calcretes (Alonso-Zarza, 
2003; Bajnóczi et al., 2006; Eren, 2011; Küçükuysal, 2016). 
Eren (2011) and Küçükuysal (2016) provided worldwide 
and mainly regional isotopic comparisons of calcretes, 
respectively. These δ18O and δ13C values reflect calcrete 
development under the influence of meteoric water and 
soil-forming processes, respectively (Purvis and Wright, 
1991; Strong et al., 1992; Leone et al., 2000; Alonso-Zarza, 
2003; Alonso-Zarza and Arenas, 2004; Eren, 2011). The 
oxygen isotopic fractionation during inorganic calcite 
precipitation depends mainly on temperature; therefore, 
δ18O values reflect the temperature of water from which 
calcite was precipitated (Friedman and O’Neil, 1977; 
Talbot and Kelts, 1990; Bar-Matthews et al., 2003; Dietzel 
et al., 2009), whereas the δ13C values of the pedogenic 
carbonates are directly related to the soil-derived CO2 and 
infer the plant types living at the surface during formation 
of the calcretes. There are two major plant photosynthetic 
pathways, C3 and C4, where each pathway fractionates 
carbon to a different extent (Alonso-Zarza, 2003; Tanner, 
2010). Moreover, comparisons of the isotopic results using 
the cross-plot and hierarchical cluster analysis exhibit 
two distinct groups of Adana and Mersin provinces 
(Figures 5 and 6). The Adana calcrete samples exhibit an 
enrichment in δ18O values compared to the values of the 
Mersin calcrete samples. These enrichments in the mean 
δ18O values of the hard laminated crust, calcrete nodules 
and tubes, and fracture infills are 0.69, 0.77, and 1.04, 
respectively. The enrichment is clearer in the fracture infill 
samples. The overall enrichment in mean δ18O values of 
the two groups is 0.78‰ PDB. The oxygen isotopes of the 
calcretes are sensitive to climatic conditions and mainly 
reflect the composition of meteoric water (Talma and 
Netterberg, 1983; Alonso-Zarza, 2003). The enrichment in 
the δ18O values of the Adana region was related to the high 
evaporation rate in comparison to the Mersin area, despite 
similar climatic conditions (Table 3). The high evaporation 
rate of the Adana region is due to probable higher ventilation 
rates of the area that resulted in removal of moisture in 
the air and consequently enhanced the evaporation rate 
under the same annual average temperature conditions 
as the Mersin area. High mean δ18O values in the samples 
of fracture infills are due to the appropriate connection of 
the fractures with the air spaces with respect to the soils 
and their high moisture rates. The almost identical δ13C 
values, together with the abundant β-fabric (biogenic) 
features in the hard laminated crust (Eren et al., 2008, 
2018; Kaplan et al., 2013) of both provinces are indicators 

Figure 4. Typical calcrete profiles: (a) Kılıçlı village, Adana; 
(b) Mersin University campus area, Mersin, showing the hard 
laminated crust (H) at the upper part of the profile gradually 
intergrading downward into the nodular (nd) and tubular (tb) 
horizon (black arrow). In (a), the hard laminated crust shows 
an upward buckling, which is the cross-section of dome-lime 
surface morphologies called tepee structure (Eren, 2007). 
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of pedogenesis (Eren et al., 2008; Eren, 2011; Kaplan et al., 
2013). Similarities in δ13C values between the two groups 
also reflect the development of calcretes under the same 
vegetation cover. Small variations in the δ13C values are 
due to the soil respiration rate in local areas (Cerling, 

1984; Andrews et al., 1998). The δ13C values suggest the 
influence of dense C3 vegetation on calcrete development 
(Lee, 1999; Bar-Matthews et al., 2003; McDermott, 2004; 
Candy et al., 2012; Alçiçek and Alçiçek, 2014). Moreover, 
similarities in the contemporary and past climatic 

Table 2. Isotopes of the calcretes from the Adana and Mersin provinces.

Adana province Mersin province

Sample δ18O (‰ PDB) δ13C (‰ PDB) Sample δ18O (‰ PDB) δ13C (‰ PDB)

Hard laminated crust Hard laminated crust
Y-6 –3.76 –10.01 H-1 –5.26 –9.00
O-9 –4.64 –8.55 H-3 –4.92 –8.89
YY-5 –4.50 –9.09 H-4 –4.89 –8.66
CKK –5.74 –8.86 H-5 –4.97 –9.03
B-3 –3.95 –8.41 H-8 –5.25 –9.07
K-1 –4.61 –8.41 H-9 –5.25 –8.90
M-4 –3.91 –8.75 E-4 –5.47 –8.49
KA-2 –5.13 –9.15 E-13 –5.84 –8.91
SA-5 –4.35 –8.27 E-66 –5.31 –8.56
AK-2 –4.91 –8.34 Mean –5.24 –8.83
Mean –4.55 –8.78
Nodule and tube Nodule and tube
Y-5 –3.87 –9.38 7-A –5.13 –8.70
O-2 –4.44 –8.63 11-B –5.39 –8.79
O-3 –4.53 –8.77 O-2 –5.07 –8.61
YY-9 –4.22 –8.35 E-18 –5.58 –8.63
B-1 –4.13 –8.38 E-32 –5.59 –8.40
K-3 –4.30 –8.25 12 –5.43 –8.66
K-5 –4.56 –8.11 E-60 –4.31 –9.65
M-2 –3.87 –8.24 2-B –4.56 –8.43
KA-1 –4.69 –8.71 Mean –5.13 –8.73
SA-2 –4.66 –7.94
SA-3 –4.68 –8.22
S-5 –4.04 –8.53
AK-1 –4.77 –8.49
Mean –4.36 –8.46
Fracture infill Fracture infill
KCD –4.05 –7.71 E-23 –5.00 –8.54
YY-2 –4.06 –8.51 K-1 –5.18 –8.74
YY-6 –4.04 –8.26 Mean –5.09 –8.64
MNean –4.05 –8.16

See Figure 2 for sample locations.
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Figure 5. A cross-plot of stable isotope values (δ18O and δ13C) of the calcretes showing the two distinct 
groups of Adana and Mersin provinces.

Figure 6. Cluster analysis showing two groups of samples of Adana and Mersin provinces where the fracture infills appear as a subgroup 
of the nodular-tubular horizon.
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conditions suggest the availability of similar contemporary 
vegetation represented by the Mediterranean crops on the 
appropriate land surfaces, namely olives (Olea europaea) 
and carob (Ceratonia siliqua), including other shrubby 
vegetation. The end-member δ13C values of soil carbonates 
formed under 100% C4 and C3 ecosystems are about 0‰ 
to +3‰ and –12‰ to –13‰ PDB, respectively (Cerling, 
1984; Cerling et al., 1989; Zamanian et al., 2016).

The δ18O and δ13C values of the hardpans also differ 
slightly from those of the nodular and/or tubular horizons. 
The hard laminated crust shows a slight depletion in the 
δ18O values regarding those of the calcrete nodules and 
tubes. These values are 0.19‰ PDB for the Adana calcretes 
and 0.11‰ PDB for the Mersin calcretes. The depletion 
in the δ18O values is due to leaching soil water along pore 
channels, from or in which calcite forms by precipitation 

and displacive replacement processes. During the early 
stages of calcrete profile development, the nodular 
and tubular features form from the vertically leaching, 
relatively thin soil-water cover, reducing the permeability 
of rocks and sediments, in turn causing the development 
of sheet-like laminar calcretes on the impermeable horizon 
from laterally moving, relatively thick soil-water (Figure 7; 
Wright et al., 1988, 1995; Eren et al., 2008; Kaplan et al., 
2014). This assumption is also supported by the existence 
of palygorskite in the samples of calcrete nodules and tubes, 
and its absence in the hard laminated crust. Palygorskite 
precipitation requires high pH values (pH » 9; Verrecchia 
and Le Coustumer, 1996; Bouza et al., 2007) or more 
evaporative conditions with respect to calcite (Eren et al., 
2008, 2018; Kaplan et al., 2013, 2018). A slight difference is 
present between the average values of the hard laminated 
crust and nodular and/or tubular horizon regarding the 
δ13C values. This difference is 0.32‰ PDB for the Adana 
calcretes and 0.10‰ PDB for the Mersin calcretes. The 
hard laminated crust exhibits a depletion in the δ13C 
values related to proximity to the bioactive horizon in 
the soil (Gong et al., 2005). The nodular and/or tubular 
horizon develops below the bioactive soil horizon where 
water is leached vertically in a vadose zone from which 
calcite precipitates or replaces the host material, creating 
impermeable/water plugged conditions. This characterizes 
the early stage of the calcrete profile development in the 
region (Eren et al., 2008, 2018; Kaplan et al., 2013). The 
advanced stage most likely occurred over this nodular 

Table 3. Climatic properties for Adana and Mersin 
provinces from the Turkish State Meteorological Service 
(https://www.mgm.gov.tr/).

Data Adana Mersin

*Mean annual temperature (°C) 18.9 19.1
*Mean annual precipitation (mm) 646.6 634
**Mean annual evaporation (mm) 1555.3 1262.2
**Mean annual humidity (%) 65.54 60.78

* From 1927 to 2017; ** from 2007 to 2017.

Figure 7. Schematic presentation of the calcrete development exhibiting two major stages: (i) early stage characterized by calcrete 
mottling, and (ii) late stage characterized by lamination (modified from Eren et al., 2018).
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and/or tubular horizon close to the bioactive soil horizon 
where the static soil water probably rested laterally over 
the impermeable column horizon. This consequently 
increased the residence time of water in the bioactive layer 
and most likely influenced the soil light carbon isotopes 
(Figure 7).

6. Conclusion    
The oxygen and carbon isotopes of the calcretes in Adana 
and Mersin provinces indicate a pedogenic origin similar 
to calcretes in other parts of the world. The enrichment of 
δ18O values of the calcretes in Adana province in respect 
to those in Mersin caused by the high evaporation rate in 

the Adana region is bound to higher ventilation of the land 
surface. The δ13C values suggest that calcrete formation in 
the soil is associated with extensive C3 vegetation similar 
to contemporary Mediterranean-type vegetation. Isotopic 
difference is also present between the hardpan and nodular 
and/or tubular/columnar horizon. The hardpan exhibits a 
slight depletion in the δ18O and δ13C values with respect 
to those of the nodular and/or tubular/columnar horizon. 
This is most likely due to the amount of leaching soil water 
from which calcretes form during the pedogenic processes, 
as well as the proximity to the bioactive soil layer.
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