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Abstract
Kim and Kim (Russ. J. Math. Phys. 26(1):40–49, 2019) have studied the type 2
poly-Bernoulli polynomials. Inspired by their work, we consider a new class of the
Frobenius–Genocchi polynomials, which is called the type 2
poly-Frobenius–Genocchi polynomials, by means of the polyexponential function.
We also derive some new relations and properties including the Stirling numbers of
the first and second kinds. In a special case, we give a relation between the type 2
poly-Frobenius–Genocchi polynomials and Bernoulli polynomials of order k.
Moreover, motivated by the definition of the unipoly-Bernoulli polynomials given in
(Kim and Kim in Russ. J. Math. Phys. 26(1):40–49, 2019), we introduce the
unipoly-Frobenius–Genocchi polynomials via a unipoly function and give multifarious
properties including derivative and integral properties. Furthermore, we provide a
correlation between the unipoly-Frobenius–Genocchi polynomials and the classical
Frobenius–Genocchi polynomials.

MSC: 11B83; 11S80; 05A19
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1 Introduction and preliminaries
Special polynomials have their origin in the solution of the differential equations (or par-
tial differential equations) under some conditions. Special polynomials can be defined in
various ways such as by generating functions, by recurrence relations, by p-adic integrals
in the sense of fermionic and bosonic, by degenerate versions, etc.

Kim and Kim have introduced polyexponential function in [12] and its degenerate ver-
sion in [14, 16]. By making use of these functions, they have introduced a new class of
some special polynomials. This idea provides a powerful tool in order to define new types
of special numbers and polynomials by making use of polyexponential function and de-
generate polyexponential function. It is worthy to note that the notion of polyexponential
function forms a special class of polynomials because of their great applicability. The im-
portance of these polynomials would be to find applications in analytic number theory,
applications in classical analysis and statistics.
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Throughout the paper we make use of the following notations: N := {1, 2, 3, . . .} and N0 =
N ∪ {0}. Here, as usual, Z denotes the set of integers, R denotes the set of real numbers,
and C denotes the set of complex numbers.

The Bernoulli Bn(x), Euler En(x), and Genocchi Gn(x) polynomials are defined by the
following exponential generating functions, respectively:

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(|t| < 2π

)
,

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(|t| < π

)
(1)

and

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
(|t| < π

)
.

One may see the references [2–7, 9–11, 13, 17, 23] for the various applications of Bernoulli,
Euler, and Genocchi polynomials.

Frobenius studied the polynomials Fn(x|u) given by

1 – u
et – u

ext =
∞∑

n=0

Fn(x|u)
tn

n!
(
u ∈C \ {1}; et �= u

)
. (2)

When u = –1, it becomes

Fn(x| – 1) = En(x).

Owing to relationship with the Euler polynomials as well as their important properties,
and in the honor of Frobenius, the aforementioned polynomials denoted by Fn(x|u) are
called the Frobenius–Euler polynomials, cf. [18].

Parallel to (2), Yaşar and Özarslan [25] introduced the Frobenius–Genocchi polynomials
GF

n (x; u) given by

(1 – u)t
et – u

ext =
∞∑

n=0

GF
n (x; u)

tn

n!
(3)

since

GF
n (x; –1) = Gn(x).

In the case x = 0 in (3), GF
n (0; u) := GF

n (u) stands for the Frobenius–Genocchi numbers.
Several recurrence relations and differential equations are also investigated in [25].

Khan and Srivastava [11] introduced a new class of the generalized Apostol type
Frobenius–Genocchi polynomials and investigated some properties and relations includ-
ing implicit summation formulae and various symmetric identities. Moreover, a rela-
tion in between Array-type polynomials, Apostol–Bernoulli polynomials, and general-
ized Apostol-type Frobenius–Genocchi polynomials is also given in [11]. Wani et al. [24]
considered Gould–Hopper based Frobenius–Genocchi polynomials and summation for-
mulae and an operational rule for these polynomials.
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The Bernoulli polynomials of the second kind are defined by means of the following
generating function:

∞∑

n=0

bn(x)
tn

n!
=

t
log(1 + t)

(1 + t)x. (4)

When x = 0, bn(0) := bn are called Bernoulli numbers of the second kind, cf. [16].
It is well known from (4) that

t
log(1 + t)

(1 + t)x–1 =
∞∑

n=0

B(n)
n (x)

tn

n!
, (5)

where B(k)
n (x) are the Bernoulli polynomials of order k which are given by the following

generating function:

∞∑

n=0

B(k)
n (x)

tn

n!
=

(
t

et – 1

)k

ext .

By (4) and (5), it is clear that B(n)
n (x + 1) = bn(x), see [16].

Very recently, Kim and Kim [12] performed to generalize the Bernoulli polynomials by
using the polyexponential function

ek(t) =
∞∑

n=1

tn

(n – 1)!nk (6)

as inverse to the polylogarithm function

Lik(t) =
∞∑

n=1

tn

nk

(|t| < 1; k ∈ Z
)

(7)

given by

∞∑

n=0

β (k)
n (x)

tn

n!
=

ek(log(1 + t))
et – 1

ext (k ∈ Z). (8)

Upon setting x = 0 in (8), β (k)
n (0) := β

(k)
n are called the type 2 poly-Bernoulli numbers.

Since

e1(t) = et – 1,

we have

β (1)
n (x) := Bn(x).

Kim and Kim [12] also introduced a unipoly function uk(x|p) attached to p being any
arithmetic function that is a real- or complex-valued function defined on the set of positive
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integers as follows:

uk(x|p) =
∞∑

n=1

p(n)
nk xn (k ∈ Z). (9)

It follows from (9) that

uk(x|1) =
∞∑

n=1

xn

nk = Lik(x)

is the polylogarithm function as given in (7). The unipoly function attached to p satisfies
the following properties for k ≥ 2:

d
dx

uk(x|p) =
1
x

uk–1(x|p)

and

uk(x|p) =
∫ x

0

1
t

∫ t

0

1
t

· · ·
∫ t

0

1
t︸ ︷︷ ︸

(k–2) times

u1(x|p) dt dt · · · dt.

By means of the unipoly function, Kim and Kim [12] defined unipoly-Bernoulli polyno-
mials as follows:

∞∑

n=0

B(k)
n,p(x)

tn

n!
=

uk(1 – e–t|p)
1 – e–t ext . (10)

They provided several formulae and relations for these polynomials, see [12].
Kwon and Jang [20] defined the type 2 poly-Apostol–Bernoulli polynomials and pro-

vided some properties for them. Moreover, by making use of a unipoly function, they con-
sidered the type 2 unipoly-Apostol–Bernoulli numbers and proved some basic properties.

The Stirling numbers of the first kind S1(n, k) and the Stirling numbers of the second
kind S2(n, k) are defined by means of the following generating functions:

(log(1 + t))k

k!
=

∞∑

n=0

S1(n, k)
tn

n!
(11)

and

(et – 1)k

k!
=

∞∑

n=0

S2(n, k)
tn

n!
.

From (11), we get the following relations for n ∈N0:

(x)n =
n∑

k=0

S1(n, k)xk (12)
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and

xn =
n∑

k=0

S1(n, k)(x)k ,

where (x)0 = 1 and (x)n = x(x – 1)(x – 2) · · · (x – n + 1), cf. [2, 3, 18].
An outline of this paper is as follows. Section 2 deals with the construction of a class

of new generating functions for the Frobenius–Genocchi polynomials, called the type
2 poly-Frobenius–Genocchi polynomials, by means of the polyexponential function and
also provides some useful relations and properties. In addition, this section shows that the
type 2 poly-Frobenius–Genocchi polynomials equal a linear combination of the classical
Frobenius–Genocchi polynomials and Stirling numbers of the first kind. Section 3 gives
the definition of the unipoly-Frobenius–Genocchi polynomials by means of a unipoly
function and includes several properties including derivative and integral properties. Fur-
thermore, a correlation between the unipoly-Frobenius–Genocchi polynomials and the
classical Frobenius–Genocchi polynomials is stated in Sect. 3. In the last section, the re-
sults obtained in this paper are examined.

2 The type 2 poly-Frobenius–Genocchi polynomials
Motivated and inspired by the definition of the type 2 poly-Bernoulli polynomials in (8)
introduced by Kim and Kim [12], in this paper, we consider the following Definition 2.1
by means of the polyexponential function.

Definition 2.1 Let k ∈ Z. The type 2 poly-Frobenius–Genocchi polynomials are defined
via the following exponential generating function (in a suitable neighborhood of t = 0)
including the polyexponential function:

∞∑

n=0

G(F ,k)
n (x; u)

tn

n!
=

ek(log(1 + (1 – u)t))
et – u

ext . (13)

At the value x = 0 in (13), G(F ,k)
n (0; u) := G(F ,k)

n (u) will be called type 2 poly-Frobenius–
Genocchi numbers.

Remark 2.1 Taking k = 1 in (13) yields G(F ,1)
n (x; u) := GF

n (x; u).

Remark 2.2 Taking k = 1 and u = –1 in (13) gives G(F ,1)
n (x; –1) := Gn(x), [15, 19].

By Definition 2.1, we consider that

∞∑

n=0

G(F ,k)
n (x; u)

tn

n!
=

ek(log(1 + (1 – u)t))
et – u

ext

=

( ∞∑

n=0

G(F ,k)
n (u)

tn

n!

)( ∞∑

n=0

xn tn

n!

)

=
∞∑

n=0

( n∑

l=0

(
n
l

)
G(F ,k)

n–l (u)xl

)
tn

n!
.

Hence, we give the following theorem.
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Theorem 2.1 The following relation

G(F ,k)
n (x; u) =

n∑

l=0

(
n
l

)
G(F ,k)

n–l (u)xl (14)

is valid for k ∈ Z and n ∈N0.

A relation between the type 2 poly-Frobenius–Genocchi polynomials and the classical
Frobenius–Genocchi polynomials is stated in the following theorem.

Theorem 2.2 For k ∈ Z and n ∈N0, we have

G(F ,k)
n (x; u) =

n∑

l=0

l∑

m=0

(
n
l

)
1

(m + 1)k–1 S1(l + 1, m + 1)
(1 – u)l

l + 1
GF

n–l(x; u). (15)

Proof From (6), (11), and (13), we observe that

∞∑

n=0

G(F ,k)
n (x; u)

tn

n!

=
ek(log(1 + (1 – u)t))

et – u
ext

=
ext

et – u

∞∑

m=1

(log(1 + (1 – u)t))m

(m – 1)!mk

=
ext

et – u

∞∑

m=0

1
(m + 1)k

(log(1 + (1 – u)t))m+1

m!

=
ext

et – u

∞∑

m=0

1
(m + 1)k–1

∞∑

n=m+1

S1(n, m + 1)
((1 – u)t)n

n!

=
(1 – u)t
et – u

ext
∞∑

m=0

1
(m + 1)k–1

∞∑

n=m
S1(n + 1, m + 1)

(1 – u)n

n + 1
tn

n!

=
∞∑

n=0

GF
n (x; u)

tn

n!

∞∑

n=0

( n∑

m=0

1
(m + 1)k–1

∞∑

n=m
S1(n + 1, m + 1)

(1 – u)n

n + 1

)
tn

n!

=
∞∑

n=0

( n∑

l=0

l∑

m=0

(
n
l

)
1

(m + 1)k–1 S1(l + 1, m + 1)
(1 – u)l

l + 1
GF

n–l(x; u)

)
tn

n!
,

which means the asserted result in (15). �

The immediate results of Theorem 2.2 are stated in what follows.

Corollary 2.1 For k ∈ Z and n ∈N0, we have

G(F ,k)
n (u) =

n∑

l=0

l∑

m=0

(
n
l

)
1

(m + 1)k–1 S1(l + 1, m + 1)
(1 – u)l

l + 1
GF

n–l(u). (16)
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Corollary 2.2 Taking k = 1 in Theorem 2.2 gives

GF
n (x; u) =

n∑

l=0

l∑

m=0

(
n
l

)
S1(l + 1, m + 1)

(1 – u)l

l + 1
GF

n–l(x; u).

Corollary 2.3 Taking k = 1 and u = –1 in Theorem 2.2 reduces

Gn(x) =
n∑

l=0

l∑

m=0

(n
l
)

l + 1
2lS1(l + 1, m + 1)Gn–l(x)

and

n∑

l=1

l∑

m=0

(n
l
)

l + 1
2lS1(l + 1, m + 1)Gn–l(x) = 0.

Let s ∈ C and k ∈ Z with k ≥ 1. We consider the function ηk,u by the representation of
an improper integral as follows:

ηk,u(s) :=
(1 – u)s–1

Γ (s)

∫ ∞

0

ts–1

et – u
ek

(
log

(
1 + (1 – u)t

))
dt, (17)

where Γ (s) is the well-known gamma function defined by

Γ (s) =
∫ ∞

0
ts–1et dt

(�(s) > 0
)
.

By (17), we observe that

η1,u(s) =
(1 – u)s–1

Γ (s)

∫ ∞

0

ts–1

et – u
e1

(
log

(
1 + (1 – u)t

))
dt

=
(1 – u)s

Γ (s)

∫ ∞

0

ts

et – u
dt

=
(1 – u)s

Γ (s)

∫ ∞

0

tse–t

1 – ue–t dt

= (1 – u)sΦ(u, s + 1, 1),

where

Φ(z, s, a) =
∞∑

n=0

zn

(n + a)s

=
1

Γ (s)

∫ ∞

0

ts–1e–at

1 – ze–t dt

with �(a) > 0; �(s) > 0 when |z| ≤ 1 (z �= 1); �(s) > 1 when |z| = 1 is the Hurwitz–Lerch
zeta function, cf. [8] and [21]. Some special cases of Φ(z, s, a) are listed as follows:

• the Riemann zeta function

Φ(1, s, 1) = ζ (s)
(�(s) > 1

)
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• the Euler-zeta function

Φ(–1, s, 1) = ζE(s)
(�(s) > 0

)

• the polylogarithm function

zΦ(z, k, 1) = Lik(z),

see [1] and [22] for details.
Hence, we state the following corollary.

Corollary 2.4 The following equality holds true:

η1,u(s) = (1 – u)sΦ(u, s + 1, 1). (18)

In view of the calculations above, we observe that ηk,u(s) is a holomorphic function for
�(s) > 0 because of the comparison test as ek(log(1 + (1 – u)t)) ≤ e1(log(1 + (1 – u)t)) with
the assumption (1 – u)t ≥ 0. By (17), we have

ηk,u(s) =
(1 – u)s–1

Γ (s)

∫ ∞

0

ts–1

et – u
ek

(
log

(
1 + (1 – u)t

))
dt

=
(1 – u)s–1

Γ (s)

∫ 1

0

ts–1

et – u
ek

(
log

(
1 + (1 – u)t

))
dt

+
(1 – u)s–1

Γ (s)

∫ ∞

1

ts–1

et – u
ek

(
log

(
1 + (1 – u)t

))
dt. (19)

The second integral in (19) converges absolutely for any s ∈C, and thus the second term
on the right-hand side vanishes at nonpositive integers. Hence, we get

lim
s→–m

∣∣∣∣
(1 – u)s–1

Γ (s)

∫ ∞

1

t
et – u

ek
(
log

(
1 + (1 – u)t

))
dt

∣∣∣∣ ≤ (1 – u)–m–1

Γ (–m)
M = 0 (20)

since

Γ (s)Γ (1 – s) =
π

sin(πs)
.

Moreover, for �(s) > 0, the first integral in (19) can be written as

(1 – u)s–1

Γ (s)

∫ 1

0

ek(log(1 + (1 – u)t))
et – u

ts–1 dt

=
(1 – u)s–1

Γ (s)

∞∑

n=0

G(F ,k)
n (u)

n!

∫ 1

0
tn+s–1 dt

=
(1 – u)s–1

Γ (s)

∞∑

n=0

G(F ,k)
n (u)

n!
1

n + s
, (21)
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which defines an entire function of s. Hence, we obtain that ηk,u(s) can be continued to an
entire function of s. From (19) and (20), we attain

ηk,u(–m) = lim
s→–m

(1 – u)s–1

Γ (s)

∫ 1

0

ek(log(1 + (1 – u)t))
et – u

ts–1 dt

= lim
s→–m

(1 – u)s–1

Γ (s)

∞∑

n=0

G(F ,k)
n (u)

n!(n + s)

= · · · + 0 + · · · + 0 + lim
s→–m

(1 – u)s–1

Γ (s)
G(F ,k)

m (u)
m!(m + s)

+ 0 + 0 + · · ·

= lim
s→–m

(1 – u)s–1

m + s
Γ (1 – s) sin(πs)

π

G(F ,k)
m (u)
m!

= (1 – u)–m–1Γ (1 + m) cos(πm)
G(F ,k)

m (u)
m!

= (1 – u)–m–1(–1)mG(F ,k)
m (u).

Thus, we get the following theorem.

Theorem 2.3 Let k ∈N. The function ηk,u(s) has an analytic continuation to a function of
s ∈C, and the special values at nonpositive integers are given by

ηk,u(–m) = (1 – u)–m–1(–1)mG(F ,k)
m (u) (m ∈N0).

Taking k = 1 in Theorem 2.3 and by (18), we have the following corollary.

Corollary 2.5 The following identity holds true:

Φ(u, –m + 1, 1) =
(–1)m

1 – u
GF

m(u).

Corollary 2.6 Upon setting k = 1 and u = –1 in Theorem 2.3 we arrive at

ζE(1 – m) =
(–1)m

2
Gm(u).

The following derivative property holds true (cf. [12]):

d
dx

ek(x) =
1
x

ek–1(x) (22)

and the following integral representation also holds true for k > 1:

ek(x) =
∫ x

0

1
t

∫ t

0

1
t

· · ·
∫ t

0

1
t︸ ︷︷ ︸

(k–2) times

(
et – 1

)
dt dt · · · dt. (23)

Now, we give the following theorem.
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Theorem 2.4 For n ∈ N0, we have

G(F ,2)
n (u) =

n∑

l=0

(
n
l

)
(1 – u)l B(l)

l
l + 1

GF
n–l(u).

Proof By (22), we first consider that

d
dx

ek
(
log

(
1 + (1 – u)x

))
=

∞∑

n=1

(log(1 + (1 – u)x))n

(n – 1)!nk

=
1 – u

1 + (1 – u)x

∞∑

n=1

(log(1 + (1 – u)x))n–1

(n – 1)!nk–1

=
1 – u

(1 + (1 – u)x) log(1 + (1 – u)x)
ek–1

(
log

(
1 + (1 – u)x

))
. (24)

From (23) and (24), for k > 1, we can write

∞∑

n=0

G(F ,k)
n (u)

tn

n!

=
(1 – u)k–1

et – u

∫ x

0

1
(1 + (1 – u)t) log(1 + (1 – u)t)

×
∫ t

0

1
(1 + (1 – u)t) log(1 + (1 – u)t)

· · ·
∫ t

0

(1 – u)t
(1 + (1 – u)t) log(1 + (1 – u)t)︸ ︷︷ ︸

(k–2) times

dt dt · · · dt.

Hence, we acquire

∞∑

n=0

G(F ,2)
n (u)

xn

n!
=

1 – u
ex – u

∫ x

0

(1 – u)t
(1 + (1 – u)t) log(1 + (1 – u)t)

dt

=
1 – u
ex – u

∫ x

0

∞∑

n=0

(1 – u)nB(n)
n

tn

n!
dt

=
(1 – u)x
ex – u

∞∑

n=0

(1 – u)nB(n)
n

n + 1
xn

n!

=

( ∞∑

n=0

GF
n (u)

xn

n!

)( ∞∑

n=0

(1 – u)nB(n)
n

n + 1
xn

n!

)

=
∞∑

n=0

( n∑

l=0

(
n
l

)
(1 – u)l B(l)

l
l + 1

GF
n–l(u)

)
xn

n!
.

Thus, we have

G(F ,2)
n (u) =

n∑

l=0

(
n
l

)
(1 – u)l B(l)

l
l + 1

GF
n–l(u).

This finalizes the proof of the theorem. �
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3 The unipoly-Frobenius–Genocchi polynomials
Motivated and inspired by the definition of the unipoly-Bernoulli polynomials in (10)
given by Kim and Kim [12], we introduce unipoly-Frobenius–Genocchi polynomials by
means of the unipoly function attached to p given in (9) as follows:

∞∑

n=0

G(F ,k)
n,p (x; u)

tn

n!
=

uk(log(1 + (1 – u)t)|p)
et – u

ext . (25)

Note that taking x = 0 in (25), G(F ,k)
n,p (0; u) := G(F ,k)

n,p (u) are called the unipoly-Frobenius–
Genocchi numbers.

By (25), we consider that

∞∑

n=0

G(F ,k)
n,p (x; u)

tn

n!
=

uk(log(1 + (1 – u)t)|p)
et – u

ext

=
∞∑

n=0

G(F ,k)
n,p (u)

tn

n!

∞∑

n=0

xntn

n!

=
∞∑

n=0

( n∑

l=0

(
n
l

)
G(F ,k)

n–l,p(u)xl

)
tn

n!
.

Hence, we give the following theorem.

Theorem 3.1 The following relation

G(F ,k)
n,p (x; u) =

n∑

l=0

(
n
l

)
G(F ,k)

n–l,p(u)xl

is true for k ∈ Z and n ∈N0.

We observe that

∞∑

n=0

d
dx

G(F ,k)
n,p (x; u)

tn

n!
=

uk(log(1 + (1 – u)t)|p)
et – u

d
dx

ext

=
∞∑

n=0

G(F ,k)
n,p (x; u)

tn+1

n!
.

Therefore, we give the following theorem.

Theorem 3.2 Let k ∈ Z and n ∈N0. We have the following derivative rule:

d
dx

G(F ,k)
n,p (x; u) = nG(F ,k)

n–1,p(x; u). (26)

By Theorem 3.2, we consider that

∫ β

α

G(F ,k)
n,p (x; u) dx =

1
n + 1

∫ β

α

d
dx

G(F ,k)
n+1,p(x; u) dx =

G(F ,k)
n+1,p(β ; u) – G(F ,k)

n+1,p(α; u)
n + 1

.

Thus, we provide the following theorem.
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Theorem 3.3 Let k ∈ Z and n ∈N0. We have the following integral rule:

∫ β

α

G(F ,k)
n,p (x; u) dx =

G(F ,k)
n+1,p(β ; u) – G(F ,k)

n+1,p(α; u)
n + 1

.

Upon setting p(n) = 1
Γ (n) in (25), we acquire

∞∑

n=0

G(F ,k)
n, 1

Γ

(u)
tn

n!
=

1
et – u

uk

(
log

(
1 + (1 – u)t

)∣∣∣
1
Γ

)

=
1

et – u

∞∑

m=1

(log(1 + (1 – u)t))m

mk(m – 1)!

=
1

et – u
ek

(
log

(
1 + (1 – u)t

))

×
∞∑

n=0

G(F ,k)
n (u)

tn

n!
,

which gives the following relation:

G(F ,k)
n, 1

Γ

(u) = G(F ,k)
n (u). (27)

From (9) and (25), we have

∞∑

n=0

G(F ,k)
n,p (u)

tn

n!

=
1

et – u

∞∑

m=1

p(m)
mk

(
log

(
1 + (1 – u)t

))m

=
1

et – u

∞∑

m=0

p(m + 1)(m + 1)!
(m + 1)k

(log(1 + (1 – u)t))m+1

(m + 1)!

=
1

et – u

∞∑

m=0

p(m + 1)(m + 1)!
(m + 1)k

∞∑

n=m+1

S1(n, m + 1)(1 – u)n tn

n!

=
(1 – u)t
et – u

∞∑

m=0

p(m + 1)(m + 1)!
(m + 1)k

∞∑

n=m
S1(n + 1, m + 1)(1 – u)n tn

(n + 1)!

=
∞∑

n=0

GF
n (u)

tn

n!

∞∑

n=0

( n∑

m=0

p(m + 1)(m + 1)!
(m + 1)k

S1(n + 1, m + 1)
n + 1

(1 – u)n

)
tn

n!

=
∞∑

n=0

( n∑

l=0

l∑

m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1, m + 1)

l + 1
(1 – u)lGF

n–l(u)

)
tn

n!
,

which yields the following theorem.

Theorem 3.4 For k ∈ Z and n ∈N0, we have

G(F ,k)
n,p (u) =

n∑

l=0

l∑

m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
S1(l + 1, m + 1)

l + 1
(1 – u)lGF

n–l(u). (28)
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Particularly, for p(n) = 1
Γ (n) ,

G(F ,k)
n, 1

Γ

(u) =
n∑

l=0

l∑

m=0

(
n
l

)
m + 1

(m + 1)k
S1(l + 1, m + 1)

l + 1
(1 – u)lGF

n–l(u).

4 Conclusion
Motivated by the definition of the type 2 poly-Bernoulli polynomials introduced by
Kim and Kim [12], we have considered a class of new generating functions for the
Frobenius–Genocchi polynomials, called the type 2 poly-Frobenius–Genocchi polyno-
mials, by means of the polyexponential function as follows:

∞∑

n=0

G(F ,k)
n (x; u)

tn

n!
=

ek(log(1 + (1 – u)t))
et – u

ext . (29)

Then, we have derived some useful relations and properties. We have showed that the
type 2 poly-Frobenius–Genocchi polynomials equal a linear combination of the classical
Frobenius–Genocchi polynomials and Stirling numbers of the first kind. Equation (29)
enables us to find some new identities of the usual Genocchi polynomials in the case when
k = –u = 1.

Moreover, inspired by the definition of the unipoly-Bernoulli polynomials introduced
by Kim and Kim [12] we have introduced the unipoly-Frobenius–Genocchi polynomials
by means of a unipoly function as follows:

∞∑

n=0

G(F ,k)
n,p (x; u)

tn

n!
=

uk(log(1 + (1 – u)t)|p)
et – u

ext .

By using this generating function, we have given multifarious properties including
unipoly-Frobenius–Genocchi polynomials and the classical Frobenius–Genocchi poly-
nomials.
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