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ABSTRACT
Nonylphenol (NP) is a bioaccumulative environmental estrogen that is widely used
as a nonionic surfactant. We have previously examined short-term effects of NP on
yeast cells using microarray technology. In the present study, we investigated the
adaptive response of Saccharomyces cerevisiae BY4742 cells to NP exposure by
analyzing genome-wide transcriptional profiles using RNA-sequencing. We used
2 mg/L NP concentration for 40 days of exposure. Gene expression analysis showed
that a total of 948 genes were differentially expressed. Of these, 834 genes were
downregulated, while 114 genes were significantly upregulated. GO enrichment
analysis revealed that 369 GO terms were significantly affected by NP exposure.
Further analysis showed that many of the differentially expressed genes were
associated with oxidative phosphorylation, iron and copper acquisition, autophagy,
pleiotropic drug resistance and cell cycle progression related processes such as DNA
and mismatch repair, chromosome segregation, spindle checkpoint activity, and
kinetochore organization. Overall, these results provide considerable information
and a comprehensive understanding of the adaptive response to NP exposure at the
gene expression level.
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INTRODUCTION
Nonylphenol ethoxylates (NPEs) are cost-effective non-ionic surfactants that are widely
used in household, commercial, industrial and agricultural applications. It is used as
detergents, emulsifiers, demulsifiers, solubilizers, antistatic agents, wetting and dispersing
agents, cosmetics, plastics and paints (De la Parra-Guerra & Olivero-Verbel, 2020; Li, Jin &
Snyder, 2018; Noorimotlagh et al., 2018; Soares et al., 2008). NPEs are readily biodegradable
due to the presence of ethoxy groups. The stepwise loss of these groups during the
degradation process leads to the formation of nonylphenol (NP) (De Bruin et al., 2019;
Li, Jin & Snyder, 2018). Anaerobic conditions are favored for NP formation; however,
some studies have indicated that oxic conditions can also drive the reaction (Careghini
et al., 2015; Micic & Hofmann, 2009). NP has high hydrophobicity and lipophilic
characteristics (log Kow between 3.8 and 4.8) with lower solubility and mobility
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(Duan et al., 2019;Mattana et al., 2019). Half-life of NP varies between 0.9 and 13.2 days
under oxic conditions. The first-order half-life of NP isomers could be >200 days under
strongly reduced conditions (Careghini et al., 2015). Hence, NP is a relatively stable
chemical and accumulate in different environmental matrices including ground and
surface waters, drinking waters, soils, sediments, atmosphere and air (Careghini et al.,
2015; De Bruin et al., 2019; Forte et al., 2016; Yang et al., 2020).

Nonylphenol mimics the natural estrogen 17β-estradiol and thereby alters estrogen
function at different development and reproductive stages of several model systems
(Noorimotlagha et al., 2020; Rachon, 2015). NP has been detected in human adipose tissue,
placenta (5.4–54.4 ng NP/g ), maternal blood, breast milk (0.07–57.3 ng NP/ml), urine
(0.1–3.7 µg NP/L), plasma samples (53.21 ± 49.74 ng NP/g in housekeeping workers) and
hair (4478 ng NP/g) (Chen, Chang & Minatoya, 2020; Chen et al., 2005; Forte et al., 2016;
Huang et al., 2014; Nehring, Staniszewska & Falkowska, 2017). The NP concentration
in breast milk from Turkish mothers was found to be up to 47 ng/ml (Sise & Uguz, 2017),
while 0.1–100 µg NP/kg fresh weight (FW) has been detected in various food content
(Acir & Guenther, 2018). In addition, 0.067–0.52 µg/kg of body weight (BW) has been
estimated as the average daily uptake value of NP and the tolerable daily intake for NP has
been proposed as 5 µg/kg BW/day by The Danish Institute of Safety and Toxicology
(Chen, Chang & Minatoya, 2020).

Toxicogenomics (genomics, epigenomics, transcriptomics, proteomics and
metabolomics) are implemented to understand the molecular mechanisms of compounds
or pollutants (Auerbach, 2017; Dos Santos & Sa-Correia, 2015). RNA sequencing
(RNA-seq) is an advanced toxicogenomic tool used for generating whole-genome
transcriptomic data by high-throughput sequencing technologies. In recent years, it has
started to replace hybridization-based microarray platforms because of its advantages such
as highly reproducibility, detection of low abundance transcripts, identification of
genetic variants, relatively little technical variation and non-reliance on probe selection
(Reed et al., 2019; Zhao et al., 2014).

Saccharomyces cerevisiae (S. cerevisiae), a budding yeast, is a eukaryotic model organism
that is used in various studies to investigate aging, cell cycle, neurodegenerative diseases,
regulation of gene expression and many different biological processes (Karathia et al.,
2011). S. cerevisiae has simple growth conditions, rapid reproductive rates, and can be
manipulated easily (Dos Santos & Sa-Correia, 2015). Moreover, the annotation and
characterization of this organism were performed (Goffeau et al., 1996), and the data
uploaded to different publicly available databases (Dos Santos & Sa-Correia, 2015).
Besides, S. cerevisiae has several structures and functions which are similar with higher
eukaryotes including humans. Around 17% of yeast genes are members of orthologous
gene families associated with human disease. The mammalian homologs for the majority
of these genes are functional in yeast and complement yeast deletion mutants. Besides,
for most of the genes, protein amino acid sequences and protein functions in yeast have
been conserved (Botstein & Fink, 2011; Dos Santos et al., 2012; Heinicke et al., 2007).
Hence, this organism could potentially be used to reveal the underlying molecular
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mechanisms of toxicity of pollutants and extrapolate the data in higher eukaryotes
(Duina, Miller & Keeney, 2014; Nomura et al., 2013).

Several studies have investigated the short- and long-term effects of NP on different
species to reveal its toxicity at the gene level (Duan et al., 2017; Forte et al., 2016; Jin et al.,
2010; Kazemi et al., 2016; Robertson & McCormick, 2012; Shelley et al., 2012;Won, Woo &
Yum, 2014; Xu et al., 2020). However, most of these studies have focused on only
specific genes rather than determining the impact on the whole genome. We have previously
determined the short-term effects (acute toxicity) of NP on S. cerevisiae using microarray
platform (Bereketoglu et al., 2017b). We found that exposure to NP resulted in substantial
changes in the expression of genes involved in oxidative phosphorylation, cell wall
biogenesis, ribosomal biogenesis, RNA processing, and genes encoding heat shock proteins
and ubiquitin-conjugating enzymes. In this follow-up study, we examined the adaptive
response of yeast cells towards NP at environmentally relevant concentration. The transcript
profile revealed that NP affects different signaling pathways including, cell cycle, iron and
copper metabolism, mitochondrial oxidative phosphorylation (OXPHOS) and autophagy.

MATERIALS AND METHODS
Strain, growth conditions and NP exposure
Saccharomyces cerevisiae BY4742 (Mata; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0) was obtained
from the Euroscarf collection (Frankfurt, Germany). To obtain single colonies, prepared
yeast extract-peptone-glucose (YPD) agar (2% (w/v) D-glucose, 2% (w/v) peptone, 1%
(w/v) yeast extract, 1% (w/v) agar) plates were spread with stock yeast cells using sterile
loop and incubated at 30 �C for 48 h. S. cerevisea cells were cultured at 30 �C in a shaking
incubator. The shaking speed was maintained at 180 rpm. To prepare the starting culture,
25 mL of YPD medium (2% (w/v) D-glucose, 2% (w/v) peptone, 1% (w/v) yeast extract)
was taken and a single yeast colony was inoculated from an overnight cultured yeast plate.
From the starting culture, 1% of the culture was taken and inoculated in 100 mL YPD
medium and cultured.

Nonylphenol stock solution was prepared in ethanol, and then the first round of the
exposure was initiated by adding NP to the cultures to reach final concentrations
(0.1, 1 and 2 mg/L NP) at time 0 h. These concentrations were chosen based on previous
study (Bereketoglu et al., 2017b). The final concentration of ethanol in the medium was
maintained at 1% (vol/vol), which did not affect growth. Ethanol, 1% (vol/vol) was used as
vehicle control. At the end of 22 hr of exposure, 1 mL sample was taken from each of
the cultures, centrifuged, and the pelleted cells were suspended in 1 mL of liquid YPD
medium. This process was repeated three times to remove possible NP residuals. After the
washing procedure, suspended cells were transferred to the new 100 mL YPD in 500 mL
flasks andNPwas added to the cultures to reach the above mentioned final concentrations of
NP, and the second round of the exposure was initiated. The exposure was performed for
40 rounds by repeating the above steps.

To determine the inhibition/mortality rates following NP exposure, cell viability
analysis was performed by vital staining with methylene blue solution (0.01% methylene
blue, 2% sodium citrate), as described previously (Bereketoglu et al., 2017b). Briefly,
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aliquots of yeast cultures exposed to NP for 8 h were taken and stained with methylene
blue solution. The number of dead (stained blue) and live (unstained) cells were
determined microscopically within 10 min of staining. The growth curve for the selected
chemical concentrations was determined by monitoring optical density at 600 nm. Briefly,
optical density measurements were conducted every 4 h with a spectrophotometer
(PhotoLab 7100 VIS, WTW, Germany). Three independent experiments were performed
for each concentration. Finally, samples were harvested and snap freezed in liquid
nitrogen, and stored at −80 �C until the RNA isolation.

RNA isolation and RNA-seq analysis
RNA isolation was performed using the mechanical lysis protocol provided with the
RNeasy Mini Kit (Cat. no.: 74104; Qiagen, Venlo, Netherlands). RNA quality and quantity
were analyzed using a NanoDrop ND-100 UV-Vis spectrophotometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA). RNA integrity (RIN) was determined with an Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) device using an RNA 6000
Nano Assay kit (Agilent Technologies, Santa Clara, CA, USA), and only those samples
with RIN values between 6.5 and 10 were used for further analysis. Triplicate RNA samples
with the best quality were selected for transcriptional analysis.

RNA-Seq was performed by BGI Genomics Organization, Ltd (Hong Kong, China).
Libraries for RNA-Seq were prepared using the following procedure. The poly-A mRNA
was purified and fragmented into small pieces. The RNA was converted into first strand
cDNA and then second strand was synthesized using DNA polymerase I and RNase H.
This was followed by addition of single Adennine base and attachment of adapter
sequence. The modified fragments were purified and amplified using PCR. The PCR yield
was quantified by Qubit and pooled samples were pooled to make a single strand DNA
circle (ssDNA circle), to get the final library. DNA nanoballs (DNBs) were generated using
the ssDNA circle. The DNBs were then read through on the BGISEQ-500 platform and
stepwise sequencing using Combinational Probe-Anchor Synthesis Sequencing Method
was performed. The RNA-Seq data is submitted to Gene Expression Omnibus (GEO)
under accession number GSE158124.

Data analysis
RNA-Seq data was analyzed using Partek Genomic Flow software (Partek, St. Louis, MO,
USA). The raw data files were first analyzed for sequence quality using pre-alignment
QA/QC. The reads were then aligned to the S. cerevisiae genome (R64-1-1) using STAR
2.5.3a aligner index (Dobin et al., 2013). Genome assembly and annotation files were
obtained from Ensemble genome browser. The generated counts were normalized using
counts per million (CPM) method and the differentially regulated genes were identified
using differential gene expression (GSA) algorithm (Law et al., 2014). Then, gene ontology
(GO) enrichment anaylsis was performed to determine GO terms. For pathway analysis
KEGG pathway database was used (Kanehisa & Goto, 2000). False discovery rate (FDR)
was set to 0.05, p value to 0.05 and fold change +/− 1.5 fold. To summarize the gene
expression analysis, principal component analysis (PCA) was performed. An average
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linkage hierarchical cluster analysis was performed to compare the difference in the global
gene expression profiles of the treated and control samples. To generate a functional
relationship network structure, the enriched GO terms were entered into the Reduce and
Visualize Gene Ontology (REViGO; http://revigo.irb.hr/) and summarized by removing
redundant GO terms (Supek et al., 2011).

Validation of RNA-seq data using quantitative real-time PCR
To validate the transcriptomic data, quantitative real-time PCR (qPCR) analysis was
performed. Five genes were selected for qPCR analysis. The cDNA samples were
synthesized from equivalent amounts of the total RNA samples used in the RNA-Seq
analysis, using a qScript cDNA Synthesis Kit (Quanta, Gaithersburg, MD, USA), according
to the manufacturer’s instructions. Then, qRT-PCR was carried out with a Light-Cycler
device using a LightCycler FastStart DNA Master SYBR Green I Kit (Roche Molecular
Biochemicals, Mannheim, Germany), according to the manufacturer’s instructions. Primer
sequences were either obtained from previously published studies (Bereketoglu et al., 2017b;
Bisquert, Muñiz-Calvo & Guillamón, 2018; Ye et al., 2006) (Table S1). Thermocycling
conditions were as follows: 1 cycle of initial denaturation at 95 �C for 10 min, followed by
45 quantification cycles of denaturation at 95 �C for 10 s, primer annealing at primer-specific
temperatures for 10 s, and primer extension at 72 �C for 25 s. The fold changes were
calculated according to the ΔΔCt method, as described by Schmittgen & Livak (2008).
Actin (ACT1) was used to normalize gene expression. All exposed and control samples
were analyzed in triplicate.

RESULTS
Inhibition of S. cerevisiae BY4742 growth by treatment with NP
Saccharomyces cerevisiae BY4742 cultures were treated with 0 (control), 0.1, 1 and 2 mg/L NP
(in ethanol) for 40 growth cycles (from 0 to 24 h in the growth curve for each growth
cycle) by refreshing YPD culture and NP every cycle. These exposure concentrations
were chosen based on our previous study (Bereketoglu et al., 2017b). To determine the
appropriate concentrations of NP for RNA-seq analysis, we measured cell viability by
methylene blue staining (Supplemental Material 1). No cell death was observed at any of
the above concentrations, while at 2 mg/L NP exposure dose the growth was inhibited
at the earlier growth cycles (Figs. 1A–1C). Although cells exposed to 2 mg/L NP showed
an inhibition in the growth at the earlier growth cycles, they adapted to the treatment and
had a similar growth pattern as control (Figs. 1D and 1E). We, therefore, established 2 mg/L
NP as an appropriate concentration to investigate the transcription profiles of yeast.
Finally, the growth was analyzed by measuring optical density at 600 nm which showed
that 2 mg/L NP resulted in a distinct growth pattern compared with other doses and control
(Fig. 1). We further calculated the generation time at log phase and found that 2 mg/L NP
exposure group had a higher generation time compared to other exposure groups and
the control at early grotwh cycles (Fig. 1F). However, at later growth cycles, yeast cells in this
group showed an adaptive response to NP exposure and generation time decreased to the
control level (Fig. 1F).
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Gene expression analyses of yeast cells exposed to 2 mg/L of NP
To analyze the global gene expression following NP treatment, mRNA was isolated from
three individual biological replicates, and RNA-seq was performed. We performed PCA to
summarize gene expression profiles. The principal component 1 explained 85.17% of
the variation and the second component 8.21%. PCA showed that the model can be used
to differentiate the treated and the control samples (Fig. 2A). We then performed an
average linkage hierarchical cluster analysis to compare the difference in the global gene
expression of the NP-treated samples with the control (Fig. 2B). All the treated samples

Figure 1 Growth patterns of Saccharomyces cerevisiae strain BY4742 upon exposure to various
concentrations of nonylphenol (NP). Cells were exposed to 0.1, 1 and 2 mg/L concentrations of NP
and the growth was recorded by measuring optical density at 600 nm. (A) The 1st round, (B) the 10th
round, (C) the 20th round, (D) the 30th round and (E) the 40th round of the exposure period.
(F) Generation time was determined for the growth data. Full-size DOI: 10.7717/peerj.10794/fig-1
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were clustered and separated from the control samples, suggesting that there is a
distinct difference in gene expression between control and treated samples.

Differentially expressed genes (DEGs) following 40 growth cycles exposure to 2 mg/L NP
were determined. Genes were considered to be differentially expressed with an adjusted
p value of less than 0.05 and applying a 1.5-fold cutoff. RNA-seq analysis revealed a
total of 948 differentially expressed genes in yeast exposed to NP compared with the
control. Of these, 834 were downregulated (Fig. 2C, green dots) and 114 were upregulated

Figure 2 Principal component analysis (PCA) and hierarchical cluster analysis of gene expression
data between the NP exposed and the control yeast cells. (A) The PCA score plot showing the dis-
tribution of NP and control based on gene responses. (B) The cluster analysis displaying gene expression
changes in the yeast cells of NP exposed and control. (C) Volcano plot of the upregulated and down-
regulated genes. The volcano plot shows the upregulated and downregulated DEGs in yeast cells in
response to NP. For each plot, the x-axis represents the fold change (FC). Genes with false discovery rate
(FDR) and p value of less than 0.05 were assigned as differentially expressed.

Full-size DOI: 10.7717/peerj.10794/fig-2
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(Fig. 2C, red dots). A complete list of these genes and their expression levels can be found in
Supplemental Material 2.

GO enrichment and pathway analyses of DEGs
We performed GO enrichment analysis to determine the DEGs in the NP-treated group
compared with the control. GO enrichment analysis revealed that 369 GO terms were
significantly affected (For the whole list see Supplemental Material 3). Many of the DEGs were
associated with cell cycle processes (meiotic cell cycle process, cell division, chromosome
segregation and chromosome organization), DNA associated processes including DNA
recombination and DNA metabolism, cell wall assembly, cell wall organization or
biogenesis, and transport processes such as carbohydrate and transmembrane transports
(Fig. 3). The top 15 enriched GO terms are shown in Fig. 4A. To identify the significantly
affected pathways, KEGG pathway enrichment analysis was applied. DEGs were
significantly clustered in 25 pathways (For the whole list see Supplemental Material 4).
Moreover, several genes were associated with KEGG pathways including glycolysis/
gluconeogenesis, metabolic pathways, arginine biosynthesis, meiosis-yeast and galactose
metabolism. The top 15 enriched KEGG pathways are shown in Fig. 4B. Of special
interest, cell cycle—yeast, oxidative phosphorylation and mismatch repair pathways

Figure 3 Visualization of GO enrichment analysis for differentially expressed genes under NP
treatment. Circle size represents the frequency of the GO term, while color indicates the log10
p-value. Red higher; blue lower. Full-size DOI: 10.7717/peerj.10794/fig-3
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were also significantly affected (Supplemental Material 4; Each of these functions will be
discussed in more depth in subsequent sections).

qPCR validation of RNA-seq transcriptome analysis
To validate the transcriptomic data, qPCR was perforemd using the same RNA samples
used for RNA seq. A total of five genes that were overexpressed upon exposure to 2 mg/L NP
were chosen. Of these five genes, QCR7, COX4 and ATP3 are involved in the OXPHOS
system, while PDR5 (ABC superfamily) and SOD1 (superoxide dismutase) are stress
response genes. The correlation coefficient, R2 of 0.94 for the analyzed five genes suggests
that the RNA seq data is consistent with the qPCR data (Fig. 5).

Figure 4 Graphical representation of the enriched GO terms and pathways. (A) The top 15 enriched
GO terms. (B) The top 15 enriched pathways. Color bar indicates the number of the genes in the GO
terms and pathways. X-axis represents enrichment score in the GO terms and pathways.

Full-size DOI: 10.7717/peerj.10794/fig-4
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DISCUSSION
Exposure to NP affected growth pattern of yeast cells
Environmental pollutants including NP are continuously released into and accumulate in
natural environments. Hence, they have become a potential threat to organisms and
ecosystems (Mao et al., 2012). It is of great importance to provide information about
their mode of actions to regulate their use in the future. Previously, we showed that the
short-term exposure to 1 and 5 mg/L of NP inhibited the growth and resulted in
substantial changes in the transcriptional profile of model organism S. cerevisiae BY4742
(Bereketoglu et al., 2017b). However, organisms may show distinct acute and chronic
exposure profile. Hence, in the present study, we examined the adaptive response of
S. cerevisiae to NP exposure in. The data showed that 2 mg/L NP resulted in inhibition of
yeast growth at the earlier growth cycles, while the cells adapted in the later stages (Fig. 1F).
Lower concentrations of NP did not show any inhibition in the growth. However, in
our previous study, short-term exposure to even 1 mg/L NP showed a growth inhibition
in cells (Bereketoglu et al., 2017b). These differences could be due to the difference in
exposure time. In the present study, we started to expose yeast cells to NP at time 0 h
whereas in the previous study, treatment was performed at mid-exponential phase. Based
on the inhibition rates and growth patterns, 2 mg/L NP was chosen as an appropriate
concentration for further analysis.

RNA-seq analysis showed a substantial change in gene expression,
clustering in GO terms and metabolic pathways
Principal component analysis analysis showed that yeast cells treated with NP were distinct
from those of the controls (Fig. 2A). We observed a total of 948 DEGs in yeast exposed

Figure 5 Correlation of gene expression from quantitative real-time RT-PCR and RNA-seq data. The
differentially expressed genes (DEGs) were chosen from the significantly enriched Gene Ontology (GO)
terms to validate RNA-seq data quantitative using real-time PCR. Y-axis represents RNA-seq fold change
of the chosen genes, while x-axis represents quantitative real-time RT-PCR fold change.

Full-size DOI: 10.7717/peerj.10794/fig-5
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to NP. Of these, 834 were downregulated and 114 were upregulated (Fig. 2C). The number
of DEGs in the present study was significantly higher than that of observed in our
previous study (Bereketoglu et al., 2017b). In the previous study, after 120 and 180 min
exposure, 1 mg/L NP resulted in 187 (63 downregulated, 124 upregulated) and 103 DEGs
(56 downregulated, 47 upregulated), while 5 mg/L NP showed 678 (168 repressed,
510 induced) and 688 DEGs (215 repressed, 473 induced), respectively (Bereketoglu et al.,
2017b). This finding indicates that exposure to NP causes severe transcriptomic changes
compared to short-term exposure. We further compared the number of common genes
between the two studies.We determined 17 and 20 common genes with 1mg/L and 5mg/LNP
exposures at 120 and 180 min exposure, respectively. Only seven genes were common
with two exposure time-points (Fig. S1). Of these, PDR5 and GRE2 are involved in stress
response, while RSB1 and TPO2 are transporter genes. Besides, FRE5 and GAC1 are
involved in iron and glycogen metabolisms, respectively. Several common and distinct
biological processes and metabolic pathways were also determined between the present
study and previous study (Bereketoglu et al., 2017b). This suggests that yeast cells may
respond to short- and adaptive response exposure to NP via common and unique
processes/pathways.

NP treatment resulted in increased expression of genes involved in
OXPHOS and encoding mitochondrial ribosomal proteins
Mitochondria are the main energy producers for cell growth, differentiation and
development. The majority of the cellular energy in the form of ATP in eukaryotic cells is
produced by the key metabolic process called OXPHOS. The OXPHOS system comprises
of five enzyme complexes (complex I to complex V) and two electron carriers
(quinone-coenzyme Q and cytochrome-C) that helps to generate proton gradient for
energy production (Fernández-Vizarra, Tiranti & Zeviani, 2009; Reinecke, Smeitink & Van
der Westhuizen, 2009; Sylvester et al., 2004). Besides, mitochondria is also involved in
regulating cell survival and death signaling. Several neurological problems, including
Parkinson’s disease, Alzheimer’s disease and Huntington’s disease, are associated with
mitochondrial functions (Diaz, 2010; Manczak et al., 2004). The OXPHOS system was
significantly affected as several genes involved in this system was upregulated in response
to 2 mg/L NP. In the present study, one gene (SDH7) associated with mitochondrial
complex II (i.e., succinate dehydrogenase (SDH)); three genes (COR1, QCR6 and QCR7)
associated with mitochondrial complex III (i.e., ubiquinol-cytochrome c reductase
complex); four genes (COX1, COX4, COX5A and COX8) associated with mitochondrial
respiratory chain complex IV, called as cytochrome oxidase (COX); and nine genes
(ATP1, ATP2, ATP3, ATP4, ATP5, ATP7, ATP11, ATP20 and OLI1) associated with
complex V, known as F0F1-ATP synthase were overexpressed. Moreover, cytochrome c1
(CYT1)—component of the mitochondrial respiratory chain, cytochrome c heme lyase
(CYC3)—that play a role in attaching heme to apo-cytochrome c in mitochondrial
intermembrane space, PETite (PET9)—major ADP/ATP carrier of the mitochondrial
inner membrane, and NADH dehydrogenase, external (NDE1)—mitochondrial external
NADH dehydrogenase subunits were also significantly induced in response to NP
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exposure. These findings are in contrast to our previous observations on the acute toxicity
of NP (Bereketoglu et al., 2017b) and bisphenol A (BPA) (Bereketoglu et al., 2017a).
Specifically, acute toxicity of NP resulted in reduced expression of many of the above and
several other genes involved the OXPHOS system (Bereketoglu et al., 2017b). Besides,
several studies have shown that mutations and defects in various subunits of OXPHOS
may cause various neuromuscular disorders in humans (Kucharczyk et al., 2009) and
OXPHOS genes are upregulated in a certain type of cancers reviewed in Ashton et al.
(2018). In another study, it has been revealed that complexes III and IV showed increased
mRNA expressions in Alzheimer’s disease patients, suggesting a great demand on energy
production. It has further been proposed that an increase in cytochrome oxidase gene
expression might be the result of an early mitochondrial alteration related to increased
oxidative damage (Manczak et al., 2004). In addition to genes involved in OXPHOS
subunits, several genes associated with mitochondrial ribosomal protein of the small
(two genes) and large (five genes) subunits were also significantly downregulated. It has
also been suggested that mitochondrial ribosomal proteins may have a role in cancer,
apoptosis and other metabolic diseases (Han, Chiu & Koc, 2010). Moreover, in a recent
study, it has been shown that 4 weeks of NP exposure caused mitochondria dysfunction
and resulted in the accumulation of reactive oxygen species (ROS) in mouse oocyte
(Xu et al., 2020). Taken together, we suggest that adaptive exposure to NP may cause cellular
and oxidative stress in yeast cells which increase energy (ATP) demand to overcome
the stress.

NP altered the expression of genes associated with iron and copper
acquisition
Iron (Fe) and copper (Cu) are essential cofactors involved in several biochemical reactions,
including electron transfer during respiration and protection against oxidative stress
(Marvin, Williams & Cashmore, 2003). In the present study, several genes associated with
Fe and Cu acquisition were significantly affected upon exposure to NP (Supplemental
Materials 2 and 3). Specifically, Fe homeostasis genes FRE4, FRE5 and FRE8 were
downregulated, while FET3, FTR1, FTH1 involved in Fe transport across the plasma
membrane and into vacuolar; FIT2, FIT3 involved in the retention of siderophore-iron in
the cell wall; SIT1 involved in siderophore iron transport; and ENB1, a ferric enterobactin
transporting gene, were significantly upregulated in response to NP. It has been previously
shown that acute exposure to lower concentrations of NP in medaka fish result in
alteration of genes involved in Fe metabolism (Won, Woo & Yum, 2014). Three genes
associated with Cu transport, CTR1 (upregulated), CTR3 (downregulated) and CTR86
(downregulated), and two genes involved in CU homeostasis, REE1 (upregulated) and
ICS3 (downregulated), were also significantly altered after NP exposure. These data suggest
that NP can disturb the metal homeostasis in S. cerevisiae.

Fe and Cu are key metals in mitochondrial metabolism, where they play essential roles
in the production of ATP (Xu, Barrientos & Andrews, 2013). Fe-S cluster is an essential
components of the mitochondrial inner membrane complexes (Complex I, II and III) (Winge,
2012), while Cu is involved in Complex IV (Yoshikawa, Muramoto & Shinzawa-Itoh, 2011)
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to constitute the electron transport chain. We further prepared a signaling pathway for the
above mentioned genes by modifying iron and copper metabolism pathway (De Freitas
et al., 2003) and KEGG OXPHOS pathway (Kanehisa & Goto, 2000). The results showed
that overexpression of OXPHOS system is mediated by upregulation of iron and copper
related genes (Fig. 6).

NP repressed autophagy-related and pleiotropic drug resistance
genes
Autophagy is a highly conserved pathway in eukaryotes in which cytoplasmic contents are
transported to lysosomes for degradation and then utilized for protein synthesis or
oxidized by mitochondria to produce energy for cell survival during starvation (Chen &
Klionsky, 2011). In S. cerevisiae, around 30 autophagy-related (Atg) genes are reported and

Figure 6 Gene–gene and gene–pathway interactions. The differentially expressed genes were plotted in
the iron and copper metabolism and OXPHOS system based on their roles in the pathways.

Full-size DOI: 10.7717/peerj.10794/fig-6
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null mutations in these genes can affect autophagy process and this in turn, leads to
increased cell death under nutrient starvation conditions (Suzuki & Ohsumi, 2007). In the
present study, four Atg genes were significantly downregulated (Supplemental Material 2).
Interestingly, this finding contrasts with that of the previous study, which the expression of
Atg genes yeast were significantly induced in response to short-term exposure of NP
(Bereketoglu et al., 2017b).

Several genes associated with the pleiotropic drug resistance (PDR) network were also
altered (Supplemental Material 2). Of these genes, PDR5 was the only upregulated gene,
while the other three genes (PDR12, PDR17 and PDR18) were significantly repressed.
PDR network is constitutively regulated by the transcription factors Pdr1p and Pdr3p in
S. cerevisiae (Bauer, Wolfger & Kuchler, 1999). This network is involved in multidrug
resistance (MDR) (Bauer, Wolfger & Kuchler, 1999). PDR5 encodes the multidrug efflux
transporter (ATP-binding cassette (ABC) transporter) Pdr5p. Pdr5p is positively regulated
by Pdr1p and Pdr3p. It provides resistance to various xenobiotic compounds, including
mutagens, fungicides, steroids, and anticancer drugs (Bauer, Wolfger & Kuchler, 1999).
The ABC superfamily of proteins is highly conserved from prokaryotes to higher eukaryotes.
Moreover, the increased expression of human ABC transporter ABCB1/MDR1 has been
observed in tumours that provides resistance to drug therapy and loss of function of this
transporter is linked with several human diseases (Bauer, Wolfger & Kuchler, 1999;
Decottignies & Goffeau, 1997). Altogether, the present result is consistent based on PDR5
expression while PDR gene expression was not consistent with our previous studies on NP
(Bereketoglu et al., 2017b), BPA (Bereketoglu et al., 2017a) and other toxicity studies on
(Nishida et al., 2014), alachlor (Gil et al., 2011) and p-anisaldehyde (Yu et al., 2010).

NP affected cell cycle progression and related processes/pathways
The eukaryotic cell cycle ensures the maintenance of cell size and the level of ploidy.
To enable and control the progression through the cell cycle and nuclear division, a subset
of genes is required for regulation of cell cycle progression, maintenance of genome
integrity by detecting DNA damage, encoding proteins necessary for DNA repair, arresting
cells for mismatch repair, and spindle checkpoint (Azzopardi, Farrugia & Balzan, 2017;
Teufel et al., 2019). Several cell cycle progression genes were significantly downregulated in
response to NP (Figs. 3 and 4). Of these, CLN2 encodes a G1 cyclin involved in cell cycle
regulation and activates the Cdc28p kinase to promote G1/S phase transition. CLB2
encode B-type cyclins involved in cell cycle progression that also activates Cdc28p, but
promote the G2/M transition (Fitch et al., 1992). In addition, CLB6 is another B-type cyclin
encoding gene that is associated with DNA replication during S phase and promotes
initiation of DNA synthesis by activating Cdc28p (Lew, 1997). Our findings contrast with
other previous NP exposure studies performed on Atlantic salmon smolts, juvenile
rainbow trout and prostate epithelial cells which showed induced expression of cell cycle
and differentiation genes (Forte et al., 2016; Robertson & McCormick, 2012; Shelley
et al., 2012). Taken together, our findings suggest that NP may inhibit the cell cycle
progression in yeast cells.
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DNA damage under environmental stresses or cellular processes may cause genomic
instability, mutagenesis or even cell death (Fu, Pastushok & Xiao, 2008; Gasch et al., 2001).
Therefore, cells have orchestrated complex surveillance pathways to ensure faithful cell
division, monitor genomic integrity during normal cell cycle progression and in response
to DNA damage agents (Chabes et al., 2003; Gasch et al., 2001; Lao et al., 2018). In the
present study, NP repressed the expression of several DNA damage response genes
including RAD genes, MEC1 and DUN1 genes which encode checkpoint proteins that
promote cell cycle arrest in response to DNA damage and are required for the repair of
double-strand breaks (Gasch et al., 2001; Lao et al., 2018; Schaus, Cavalieri & Myers, 2001).
It has been shown that mutations in the above mentioned genes in yeast cells have
defects in cell cycle arrest and gene expression responses, and these cells show higher
sensitivity to DNA damaging agents (Bashkirov et al., 2000; Desany et al., 1998). In contrast
to the present finding, it has been previously demonstrated that acute NP exposure
upregulated genes related to DNA damage and apoptosis in juvenile rainbow trout
(Shelley et al., 2012). We suggest that this might be due to species differences as well as
the exposure period. In addition, we observed decreased expression of genes associated with
mismatch repair (MMR) such as MSH and MLH genes. MMR is a highly conserved
mechanism that plays a critical role in faithful replication of genetic material by excising
DNA mismatches introduced by DNA polymerase (Chakraborty, Dinh & Alani, 2018).
In S. cerevisiae, multiple MutS MSH and MLH have evolved to function as heterodimers
with specialized functions in DNA repair and recombination (Demogines et al., 2008). Taken
together, the present findings suggest that the S. cerevisiae show adaptive response towards
NP exposure by inhibiting the expression of genes related to DNA and mismatch repair,
cellular responses to DNA damage, and cell cycle progression.

Molecular and biochemical analyses have shown that various proteins are required for
proper spindle function in cells including microtubules, kinetochores, spindle poles,
microtubule based motor proteins and multiple regulatory enzymes (Geiser et al., 1997).
We have observed decreased expression of several genes involved in chromosome
segregation, spindle checkpoint activity, and kinetochore clustering in response to NP
exposure. Particularly, the affected genes encode proteins required for spindle pole
body (SPB) insertion and duplication, mitotic nuclear migration, mitotic spindle
positioning, kinetochore assembly, clustering and function, and kinetochore-microtubule
attachment. In a previous study, it has been indicated that NP exposure disrupted
meiotic spindle organization and caused chromosome misalignment in mice (Xu et al.,
2020). Besides, several genes associated with telomerase activities such as telomere
length regulation, telomere clustering, and capping were significantly downregulated.
Telomeres are nucleoprotein structures located at the ends of chromosomes that protect
chromosome ends from degradation and deleterious chromosomal rearrangements
(Chan & Blackburn, 2002; Collins & Mitchell, 2002; Romano et al., 2013). It has been
suggested that environmental stress may affect the regulation and the activity of the
genes involved in telomerase activity and consequently perturb telomere length
homeostasis (Romano et al., 2013). Taken together, our observations suggest that NP
exposure may cause spindle mis-orientation, disrupt kinetochore functions, and
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impair kinetochore-microtuble attachment, leading to the generation of bi- and
multi-nucleated cells.

CONCLUSION
In summary, genome-wide transcriptional profiles of S. cerevisiae were analyzed to provide
useful information for understanding the mode of actions of NP exposure in yeast cells.
The present results show that NP affected genes involved in OXPHOS, iron and copper
metabolism, autophagy, pleiotropic drug resistance, spindle and kinetochore functions,
DNA repair mechanisms, nuclear division, chromosomal segregation, telomerase activity
and cytokinesis, indicating that NP exposure triggers mechanisms associated with stress,
energy metabolism, cell cycle progression and DNA repair in yeast. In conclusion, the
results presented here provide critical insights into the adaptive response of S. cerevisiae to
NP exposure and the data could be helpful in understanding its molecular mechanisms
of action.
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