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In this paper, we introduce degenerate multi-poly-Bernoulli polynomials and derive some identities of these polynomials. We give
some relationship between degenerate multi-poly-Bernoulli polynomials degenerate Whitney numbers and Stirling numbers of the
first kind. Moreover, we define degenerate multi-poly-Bernoulli polynomials of complex variables, and then, we derive several
properties and relations.

1. Introduction Note that
For any A € R/{0} (or C/{0}), degenerate version of the
exponential function €5 (¢) is defined as follows (see [1-15]) lAm}) B,(x;A)=B,(x), (3)
()= (1+ Atﬁ _ i (x) ﬁ’ (1) where B,,(x) are the familiar Bernoulli polynomials (cf. [1, 3,
2l 4,6,8,11, 12, 14, 16-22])
where (x),, =1and (x),, =x(x=A) --- (x = (n - 1)A) for n t o R t"
> 1, (¢f. [1-15]). It follows from (1) is lim,_oef (£) = ¢¥. Note 716 - ;}Bn@m’ (|t < 27). (4)

that e} (¢) = e, ().
Carlitz [1] introduced the degenerate Bernoulli polyno-
mials as follows: For k € Z, the polyexponential function Ei;(x) is defined
by (see [21])

t \- t"
e (t)= Y Bl ) (2) ©
e (-1 4 = n! Eiy (x) = Z(n_l)'nk,(kel) (5)

Upon setting x=0, f3,(0;4):=p,(A) are called the
degenerate Bernoulli numbers. Setting k=1 in (5), we have Ei (x) =¢* - 1.
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The degenerate modified polyexponential function [12]
is defined, for k € Z and |x| < 1, by

Eiga(x)= ). mx"~ (6)

Note that Ei ;) (x) = ¢;(x) = 1.
Let k € Z and A € R. The degenerate poly-Bernoulli poly-
nomials, cf. [12], are defined by

e UEDX(CEC
log, (1+1) = ZA”_I(UH%%’ (A€R), (8)

where log, (1 +t) are called the degenerate version of the log-
arithm function (cf. [8, 12]), which is also the inverse func-
tion of the degenerate exponential function e, (#) as shown
below (cf. [8])

ey(log) (1 +1)) =log(ey(1+1)) =1+t 9)

Letting x = 0 in (7), B%(O) = B% are called the type 2 degen-
erate poly-Bernoulli numbers.

The degenerate Stirling numbers of the first kind (cf.
[8, 13]) and second kind (cf. [4-6, 9, 17]) are defined,
respectively, by

1 < n
crllog (1+0)= Y5, (k) (k20), (10)
: n=k
and (cf. [1-27])
1
gl ZS“ (n,k —., k>0). (11)

Note that lim,_,, in (10) and (1.8), we have (cf. [8, 13])

ZSlnk

(log 1+1)) k >0), (12)

and (cf. [4-6, 9, 17, 24])

e—l

Zsz (n, k >0), (13)

where S;(n, k) and S,(n, k) are called the Stirling numbers
of the first kind and second kind.

The following paper is as follows. In Section 2, we define
the degenerate multi-poly-Bernoulli polynomials and num-
bers by using the degenerate multiple polyexponential func-
tions and derive some properties and relations of these
polynomials. In Section 3, we consider the degenerate
multi-poly-Bernoulli polynomials of a complex variable and
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then we derive several properties and relations. Also, we
examine the results derived in this study [28, 29].

2. Degenerate Multi-Poly-Bernoulli
Polynomials and Numbers

Let kl’ kz, R
tial function Eij ; ...
1K2>

k, € Z. The degenerate multiple polyexponen-
J;1(x) is defined (cf. [15]) by

1 e (1 xM
2,___)kr;A(x) _ Z ( )nl,/\ ( )n,,Ak -
0<n, <ny<---<n, (1’11 - 1)'(7’1r - 1)!7111 sy

(14)

Eikl,k

where the sum is over all integers n,,n,,---, n, satisfying
0<mn, <n,<---<n,. Utilizing this function, Kim et al. [15]
introduced and studied the degenerate multi-poly-Genocchi
polynomials given by

erikl;kz»"'yk,;A(log/\(l + t)) ex(t) _ i g(kl,kz,---k,) (x) t (15)
A - nA P

(e)t(t) + 1)" =0 n!

Inspired by the definition of degenerate multi-poly-Genocchi
polynomials, using the degenerate multiple polyexponential
function (14), we give the following definition.

Definition 1. Let ki, k,, -+, k, € Z and A € R, we consider the

degenerate multi-poly-Bernoulli polynomials are given by

r!Eikl Jysee kA (lOgA (1 + t

(ex(t) = 1)’

x Z §B n'
(16)

Upon setting x =0 in (16), the degenerate multi-poly-
Bernoulli polynomials reduce to the corresponding numbers,
namely, the type 2 degenerate multi-poly-Bernoulli numbers

%g},kz,...,k,) (0) = ?lelkaz,n.,kr)_

Remark 2. As A — 0, the degenerate multi-poly-Bernoulli
polynomials reduce to the multi-poly-Bernoulli polynomials
given by

rlEi g ..k (log (1 +1))

@1y

Z%“‘ X n'. (17)

Remark 3. Upon setting r =1 in (16), the degenerate multi-
poly-Bernoulli polynomials reduce to the degenerate poly-
Bernoulli polynomials in (7).

Before going to investigate the properties of the degen-
erate multi-poly-Bernoulli polynomials, we first give the
following result.
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Proposition 4 (Derivative Property). For k;, k,, -+, k, € Z
and A € R, we have

d _. I_.

EElk,,kz,---,k,;A(x) = ;Elkl,kz,---,k,—l;/l(x)' (18)

Proof. By (14), we see that

d_.
%Elkl,kz,m,kr;/\(x) =

)

0<ny<n,<-+-<n,

W
(m = 1)t
_1 y (19)

X
0<ny<n,<-++<n,

S

( l)n,,lxnr

(n, - 1)!71’{1 b

) (1)n1 A (l)nr,/\xnr
(n, =)l (n, - 1)!n]1<‘ !
1.
= ;Elkl,kz,w,k,—lgk(x)'

Theorem 5. The following relationship

kpkyye ook, (N Ky k,
B3 () = Z( . )%ﬁ_j,; @ )
=0\ ]
holds for n > 0.
Proof. Recall Definition 1 that
t" 7B g g (logy(1+1))

Y gl £

n=0 nl (ex(t) = 1)r

:Z?B

n=0 j=0

-5 ( )

which gives the asserted result (20).

8
3

8

The degenerate Bernoulli polynomials of order r are
given by the following series expansion:

[ee] , . tn B t r
YAy = (o) 40 @

n=0

(f. [3, 6, 8, 17]).
We provide the following theorem.

Theorem 6. For n>r. Then

n+r

LD

m=0 0<n;<n,<---<n,.<m

n+r
- ( )ﬁfm (X3 0)S; ) (m,m,)

(1)11,,/\
(n+r)l(n; =1l (n, - I)Inlf’ nlf .
(23)

(k)
%n,/l (

nlrln (1), 5 -

X

Proof. Recall from Definition 1 and (10) that

e (1)
(D2 (1), 2 (oga (1+1))™
. (1, = D)lee(n, = 1)l ol
rlei (1)
(D)p o (1), 21!

Lee(n, - 1)!n’f‘ .

(o) n
ka ko L:
= n!

(1), 2S1a(ms an)

lee(n, - 1)!n]1(‘ o

3]
M
=

;
>.4
ng

) (1) A (l)nr,}tsl.l(m’ n)n,!
0<n <nz< -<n,<m ”1 - 1)!"'(", - 1)!1’!11(' n’:,

w23() %

n=r m=0 0<n, <ny<---<n,<m
(1), (1),
(ny = 1)l (n, - l)lnlf‘ ol
n-r

B 1S, a(m)
(29)

which means the claimed result (23).

Theorem 7. The following formula

kpkg,ok, c h kpokyye ook,
B ><x+y>=z<j)<y>j,A%,&j,A Jx), (29

j=0

is valid for k;, k,, -+, k, € Z and n > 0.



Proof. In view of Definition 1, we see that

k,;k(log)»(l + t)) x+y

§8<k1‘k2)m’ky>( )i_ r!Eikl,kz,m,

" xX+y)—== = e, (t
20 l @n-1y 2
_ Ntk E R t"
= 2B @Y 0
i=0 j=0
0 n n n
Kyodeyye ek, t
= Z( )(nmi” ><x>)—,,
< . n:
n=0 \j=0 \ J

which implies the desired result (25).

Theorem 8. The following relation

d
2 sl

’kr) n
Ir (x)

1l
m
-
—
3
v

iz
R
<
Z

—~

Nay

—

>

N

7

—

—

~

—

is valid for k;, k,, -+, k, € Z and n > 0.

Proof. To investigate the derivative property of %( ook )(x)
that

gt B o) 4
i dx n! (erx(t) - 1) dx!
_ o) (kpkye ik, ﬂll 1+ At
;;)%m (x)n!/\ n (1A
- o i\ @ l+l
_ <z %( . ) Z ALy
n=0 k=1

tn+l

%(kl’kZ"“’kv)(x) ( )ZH /\—1
A ) n!’

(28)

|
Nl
M8

0 =

3
Il
—_

which provides the asserted result (27).
We here give a relation including the degenerate multi-
poly-Bernoulli polynomials with numbers and the degener-

ate Stirling numbers of the second kind.

Theorem 9. The following correlation
kpkyy ok, RN (kppkyyeoo ok,
B, )= Y Z( ><x>,sn<m IR
(29)

is valid for k;, ky, -+, k, € Z and n > 0.
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Proof. By means of Definition 1, we attain that

O kkk), " TIEL 2 (log (1 +1))
2B = oy A
rEip ¢ o (logy (1
_ kl)kl&e;((ﬂt;(_ 1g;\r( +t))(ek(t)—1+1)"

k(108 (L+1)) S X e () =1}
@O-1y 10(1)(/\(0 1)

" m!
n (kpdeyyrk) | £
( )(x)smm DB )
. !

where the notation (x), is falling factorial that is defined
by (x)p=1 and (x),=x(x-1)--(x—(n-1)) for n>1,
(cf. [1, 2, 5-14, 21, 23, 24]). So, the proof is completed.

rlEiy x

|
18
8
>
3|

=
I
=1
T
o
3
i

I
Mg
M:
M=

3
i
1)
3
il
o
T
1)

Kim [5] introduced the degenerate Whitney numbers are
given by

n

GO )~ 3w,k o (20, (1)

k!
mkk! o’

Kim also provided several correlations including the degen-
erate Stirling numbers of the second kind and the degenerate
Whitney numbers (see [5]).

We now give a correlation as follows.

Theorem 10. For k;, k,, ---k, € Z and n > 0, we have

(kpkayreok,)

kpokyy
2851,/\ (m l‘/\) n—m,A

m=0 |=0

xu+tx ii(;)ul
(32)

Proof. Using (31) and Definition 1, we acquire that

tn
Z % (xu+a)—
n!
_ r!Elkl,kz,»-»,k,;A(log)t(1 +1))

e

rlEi; . .. 4 (log, (1
_ kvkzief(rf)(_ f;f D oy - 141y

rBi g ga(logy(148) XX
) CIOED) Z<l>

=0

r1Eij . logA (1+1)) & l(x el(
= L2 u 76 (1)
( ( ) ; l Nyl A
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B gk (10gr(1+1)) & ei(t)-1)
— — Zul I(A(')[ )6/\(1')
(ex(r)—1) = !
kokyok) B X t"
= Y BTSN ), Wi 12)
n=0 n=0 [=0
clewel " i (kykysreosk,) t
= Z Z u (x)lwutx(m’lM)%n mA E’
n=0 \ m=0 =0 m
(33)

which implies the asserted result (32).

3. Degenerate Multi-Poly-Bernoulli
Polynomials of Complex Variable

In [25], Kim et al. defined the degenerate sine sin,t and
cosine cos, t functions by

ixt_ —ixt » ixt —1xt
Sin(;)(t)zﬁ();k ()andcosy(t):e“)’;el ()

(34)
where i=+/—1. Note that limlbosingx)(t):sin xt and
lim, _ocos\” () = cos xt. From (34), it is readily that

e (t) = cos(x)(t) + isin(x)(t) (35)
A (1) = CoSy A ()
By these functions in (34), the degenerate sine-

polynomials S, ,(x,y) and degenerate cosine-polynomials
Cy) (%, y) are introduced (cf. [25]) by

(o) tn )
Y Sealny)— =& (1)sing” (1), (36)
n=0 :
(e8] tﬂ
Y Cral®y)— = i(t)ecos” (1), (37)
n=0

Several properties of these polynomials in (36) and (37) are
studied and investigated in [25]. Also, by means of these
functions, Kim et al. [25] introduced the degenerate Euler
and Bernoulli polynomials of complex variable and investi-
gate some of their properties. Motivated and inspired by
these considerations above, we define type 2 degenerate
multi-poly-Bernoulli polynomials of complex variable as
follows.

Definition 11. Let ky, k,, --+, k, € Z. We define a new form of
the degenerate multi-poly-Bernoulli polynomials of complex
variable by the following generating function:

rlEi g ..ka(l0gy(1+1)) £t

k) t”
COED ZB i)

5
By (34) and (38), we observe that
Ky koo, ) ko ok, )
i(QA e+ i) ~B i)
=0 21 n' (39)
rIEi 4 (log, (1 + ¢
)
(6 -
and
Ky ook, ) Ky dyyeeik, .
s (B ) B i)
=0 2 n! (40)
rlEi, . .., (logy (1 +¢
- kl,kzie,k(,;})( lg)lr( D et (t)cos? (0.
(1) -

In view of (39) and (40), we consider the degenerate
multi-poly-sine-Bernoulli  polynomials qu’fj\’kz""’k'ﬂ (x,y)
with two parameters and the degenerate multi-poly-cosine-
Bernoulli polynomials Bg}’kz’m’k';C) (
ters as follows:

x,y) with two parame-

< s " rlEi i a(logy(1+1)) .0
B, L e = e (t)siny’ (1),
y;) )7’1' (e,\(t)—l) /\() A ()
(41)
kl ey " rlEig i ea(logy(1+1)) )
Z B 'x’ )m - (E)L(t) — l)r é/{(t)COS)L (t)
(42)
Note that
hmB(lf vk )(x,y) = Blkwker-ohisS) (x,y)and
e (Ky gy -k 5C) Ky ks (43)
limB " (x, ) = B R (x, ),
which  are  multi-poly-sine-Bernoulli ~ polynomials
Bk k) (x,y) and multi-poly-cosine-Bernoulli polyno-
mials Bk k) (%, y) with two parameters.

By (39)-(42), we see that

(kyokeysenik,) . (ky gk, )
(Ky ook 38) (Bn,/\ ’ (x+iy) =B, (x— zy))
Bn,)t (X, y) = 2 R

i) + B - )
2 .

B(kl ek
(kp Ky 5C) _ nA
Bn,/\ (x’ y) -

(44)

We now give the two summation formulae by the follow-
ing theorem.



Theorem 12. For k, k,, --+, k, € Z and n > 0, we have

n
(kyppkgses k1 ks
Bn,/\ x + ly Z n mA
m=0

n
Bffi’kz’m (x+iy) = Z( )
m=0

Proof. The proofs of this theorem can be done by using the
same proof methods used in Theorems 5 and 7. So, we omit
the proofs.

(@) (i), (45)

W xriy),,

(46)

We here provide the two derivative formulae by the fol-
lowing theorem.

Theorem 13. For k, k,, ---, k, € Z and n > 0, we have

(ks

d .
gtk )(x +iy) = an >(x +1iy),

a nA

d (ko k, " Kk ) _
=B M xriy)=p, (J%ﬁ w M i EnT -
(47)
Proof. The proofs of this theorem can be done by using the
same proof methods used in Theorem 8. So, we omit the
proofs.
We give the following theorem.

Theorem 14. For k;, k,, -+, k, € Z and n > 0, we have

Kk ok S n Kok ook
B;(a,/\ ’ >(x, y)= 7:0( ] )Bfa-z,f

(kyskge-k,3C) n (s
B,y (%)=L ( l )Bn’,j

')SI,A("’)’)>
(49)

Cia(x: ).

Proof. From (36), (37), and (38), we get

g (kg iS) t"
DB ()
=0 n:

_ rEi g g (logy (1+1)) . 0)

(ex(t) = 1)

Il
iMve
:UUA
o
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(Ky ey, 5C t"
ZB > x,y)ﬁ

r!Elkl)kz)_._,k ;A(log (1 + t))
- R & (t)cosy” (1)

[ee] n o0 n
(kykyeoik,) £ t

Z Bn,)l\ ’ ﬁ Z Cn,)t(x’y) E

n=0 " n=0 :

n n
kyokyseeeok,)
= (nxz)o (?_o ( ] >B5¢—11,A2

' Cz,a(’“)’)) R

(49)

which complete the proof of the theorem.

We note that (cf. [25])

n

. e . t

s (6= 2 g A" ()RS 2k 1) L (50)
n— t

cosg ()= Sl H DSk S (6D

We give the following theorem.

Theorem 15. For k;, k,, .-+, k, € Z and n > 0, we have

(kpkzr""kr; ) _n
B, (% ¥)=1xo

n
(ko kiC) v 3] (ko)
Bn,/l\ : (x’y)_ 7=1k2—0< I>Bnll,/\2

( )Al 2k1 kka”Sl/\ l 2k+1)

(52)

where the notation [-] is Gauss’ notation and represents the
maximum integer which does not exceed a number in the
square bracket.

Proof. By (41)-(51), we observe that

(ky ey 38 "
ZB (x, y)m

_ ZB(IQ Skyoeenky) x e [%}An—lk—l(_l)ky2k+ls (7[ 2k + 1)1
ﬂ'n:lk:O 1A n!
n "
°°<<Z>B‘ A - >"y2k*lsl,A<l,2k+l>)m’
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tn
ZBkk2 kC)x e

n:

B allog(141)
(ex(t) =1
© t"oo [%] !

e t
A1) 58,0 (n, 2K)

& (t)cosy (1)

n'n:1k=o
_oo [ n (kl Ky
=n=0| I=1 l B,

So, the proof is completed.

n

2 @) A 158, 2k>> o

We give the following proposition.

Proposition 16. The following relations

(kppkyye-5k,58) _ TN gk, sS)
B,y (x+uy)=1, ( | ) B, X (6 ) (1) 15

Kyokyr ok sC n Ky ke ik sC
B %x+wﬁ=u<l)BLx (%) (u),,

hold for k;, k,, -+, k, € Z,u € C and n > 0.

Proof. The proofs of this proposition can be done by utilizing
the same proof methods used in Theorem 7. So, we omit the
proofs.

Upon setting x=0 in (41) and (42), we consider the
degenerate multi-poly-sine-Bernoulli polynomials

Bi’f}"kz"“’k';s) (y) and the degenerate multi-poly-cosine-Ber-

noulli polynomials B,g’fi’kz""’k';c) (») as follows

S ks " rlEi oo (logy (1 +¢
ZB(k/]\,kz, J,58) ) = kypokss ,k,,/\( gar( ))singy) (1),
P n! (ea(t) = 1)

S s m rlEi ea(logy(1+t
Z B(ki,kz) k,;C) e = Ky ok ,k,,)t( gxr( ) COS&)’) (1).
n=0 " n! (e)l(t> - 1)

(56)
We now provide the following theorem.

Theorem 17. For k;, k,, --+, k, € Z and n > 0, we have

n o m n
Kyoke -k 3C kpkgye ek sC
B\ Ww=zz<>M@mw%mk>
m

() withB ) (x, ) = 0.

(57)

Proof. The proofs of this theorem can be done by utilizing the
same proof methods in Theorem 9.

Let «a be any fixed real (or complex) number. The Ber-
noulli polynomials of order « is defined by (cf. [25])

t ¢ Xt \ (@) t
e =) BY(x)—,
(&55) - Ly

When x =0, the Bernoulli polynomials of order « reduce to
the Bernoulli numbers of order a, denoted by B%).We give
the following relation.

(|t|<2m).  (58)

Theorem 18. For k;, k,, .-+, k, € Z and n > 0, we have

(kg (kpokeyye -5k, 39)
By (1) - By )
n-1/n-—1 (59)
(SRR (-1)
=n ( >Bn11,)t )()’)Bl >
1=0 )
(pkg ek (kp gk 5C)
Bn)x )(1,)/) BnA (y)
n-1/n-—1 (60)
_ (kyskege-5k,3C) (-1)
=n ( )Bn 1- m (7)B,
I=0 )
Proof. By (55) and (56), we acquire
\ (kl)kz"")kﬁs) tn \ (kl’kz"”)kﬁs) tn
ZBn,/\ (1>)’)E - Z B\ (}")ﬁ
n=0 ° n=0 :
B g ea(logy(1+1)) ()
= Dk koA LB D) G (1) (0 (1)~ 1)
(er(t) - 1) 4 g (61)
— \ (k1>k2>""kr§s) tn“ . -1 tn
- Z(:)Bn,l (y) nl _0B1(1 )E

||M8

n
(ky koo, 38 -1
Z()m; )8
0 =0 .

Thus, (59) is proved. We prove (60) in the same way.
Here is a special case of Theorem 18.

Corollary 19. For k;, k5, -+,

n—1 -1
(kpskeyse- k) (kpke-k,) n (kpkyrr-k,) pp(~1)
B, (1) =B,y ”Z< 1 )Bn_‘lfu B,

(62)

k. € Z and n> 0, we have

which is a relation including the degenerate multi-poly-
Bernoulli polynomials.

4. Conclusions

In this paper, we defined the degenerate multi-poly-Bernoulli
polynomials by employing the degenerate multiple



polyexponential functions. We have established some identi-
ties and relations between degenerate Whitney numbers and
degenerate Stirling numbers of the first kind. Also, we have
established addition formulas and derivative formulas of
degenerate multi-poly-Bernoulli polynomials. In the last
section, we have defined degenerate multi-poly-Bernoulli
polynomials of complex variables and then we have derived
several properties and relations.
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