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In this paper, the higher-order type 2 Daehee polynomials are intro- Received 30 May 2022
duced and some of their relations and properties are derived. Then, Accepted 13 August 2022

some p-adic integral representations of not only higher-order type 2 KEYWORDS
Daehee polynomials and pumbers bu(also type 2 Daeheg polynomi- Type 2 Daehee polynomials;
als and numbers are acquired. Several identities and relations related higher-order type 2 Daehee
to both central factorial numbers of the second kind and Stirling polynomials; p-adic integral;
numbers of the first and second kinds are investigated. Moreover, the the central factorial numbers
conjugate higher-order type 2 Daehee polynomials are considered of the second kind; Stirling
and some correlations covering the type 2 Daehee polynomials of ~ numbers of the first and
order 8 and the conjugate higher-order type 2 Daehee polynomials second kinds
are attained. 1991 MATHEMATICS
SUBJECT
CLASSIFICATIONS
11B73; 11B83; 05A19; 11B68;
33C45

1. Introduction

Recently, Kim et al. [1] considered the higher-order type 2 Bernoulli polynomials of the
second kind as follows

00 n —_INT
«r B 14+2—1Q+2) v
nZ:O b ) nl ( 2log(1 + 2) ) (1+2) M)
and investigated several relations and formulae associated with central factorial num-
bers of the second kind and the higher-order type 2 Bernoulli polynomials. Inspired and
motivated by the above study, here we consider the higher-order type 2 Daehee polyno-
mials and derive some of their relations and properties. Also, we provide p-adic integral
representations of type 2 Daehee polynomials and their higher-order polynomials. We
then investigate some identities and relations. Moreover, we consider the conjugate type
2 Daehee polynomials of order B and acquire relationships including the type 2 Dachee
polynomials of order 8 and the conjugate higher-order type 2 Dachee polynomials.
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LetZy = {y € Qp : |ylp < 1} in conjunction with Q, = {y = Y ganp":0<a; <

p — 1} and C, be the completion of the algebraic closure of Qp, cf. [2-10], where p be a
prime number and the normalized p-adic absolute value is provided by |p|, = % For g :

Zp — C, (g being a continuous map), the p-adic bosonic integral of g is given as follows:

p"-1
1
I(g) :=f gy)duo(y) = hm — gy). (2)
Zp oo p™

y=0

It is observed from (2) that
In(g1) — Io(g) = g (0), (3)

where g1(y) = g(y + 1) and g'()) = d‘%/)lyﬁ, cf. [2-10].
The familiar Bernoulli polynomials are defined as follows (cf. [1,6,7,11-18])

> z" z
Z Bn(y)ﬁ = e
n=0

The type 2 Bernoulli polynomials b, (y) are given as follows (cf. [1,14,19])

o7 / e ) zd o ().

Zp

> zZ" z vz
> bn(y)— = 7—=¢" (4)
-0 n. e — ¢

When y =0, we acqulre b, (0) := b, termed the type 2 Bernoulli numbers. We note
ba(y) = 2" 1B, (L5 L) forn > 0.
The cosecant polynomlals are defined by

o0 n yz yz
z ze 2ze
2 Day) == . )

sinhz e%Z—e %

In this particular case y = 0, D,(0) := D,, are termed the cosecant numbers that are a
hot toplc and have been worked in [1,14,19]. Here we observe that D, (y) = 2b,(y) =
2"B, (y L) for n > 0. The sums of powers of consecutive integers can be computed by the
Bernoulh polynomials as follow:

n—1
Z = Bry1(n) — Br41(0) (el reNy) ©)
r+1

and it is noted that (cf. [1,14,19])

Z<21+ 1) = )(Dr+1(2n) Drt). 7)

The higher-order type 2 Bernoulli polynomials are defined as follows:

ad N z r
an (V)J = (ez_e_z) e’?. (8)

n=0
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The Stirling numbers S, (n, r) of the second kind are given by (cf. [9,13,20-22])
n _ 1 r
Zsz(n,r)z— = u (r=0) (9)

and the Stirling numbers S; (1, ) of the first kind are provided by (cf. [2,13,19])

ZSI(”’ r)z_”" = (log(l—j_z))r’ (10)
n! r!
which satisfies
W= _Si(nny". (11)

r=0
The central factorial numbers T'(n, r) of the second kind are defined by (cf. [17,23-25])

=Y T, (nr>0), (12)

where 01 :=00 4+ -1)@+%-2)--@+L—(r—1) for r>1 and 00 :=1
By (12), the generating function of T'(n,r) is provided by (cf. [23])

(=)
Z T(n, r)— =—* " (r=0). (13)
Note that T(n,7) = 0forn <r.

2. Higher-Order type 2 Daehee polynomials
The familiar Daehee polynomials D, () are introduced by (cf. [2,3,5,8-10,21,26]):

ZDnm— =0T gy, (14)

In this particular case y =0, D,(0) := D,, are termed the Daehee numbers. By the
formula (2) and (14), we have

S oun = [ ararane =3 [ vammduns, s
n=0 n Zp n=0"Zp n

where (&), :=a(@ —1)--- (¢ — n+ 1) for n > 1 with (a)¢ = 1.
By (15), it is readily seen that

Du(y) = _/Z (v +Pnduo(y) (n=0).
P

The usual higher-order Daehee polynomials are introduced by (cf. [8,27])

(log(1 +2))"
z' '

ZD;”(;/)% —(1+2) (16)
=0 :
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The following relation holds (cf. [8,27])

n

DY (y) =Y B ()S1(n,m).

m=0

The exponential generating functions of type 2 Daehee polynomials d,(y) and numbers
dy, are given by (cf. [9])

(1+2)"log(1+2) s "
1+ -1+ nzod”(”)n! (17)
and
log(1+2) _ O
A4+2)—(1+2"1 nzzod”n_!' (18)

We readily observe that d,,(0) = d,. In [9], Kim et al. analyzed diverse relationships and
properties of these polynomials and numbers by using their generating functions.

Now, we aim to investigate more properties and representations of the mentioned num-
bers and polynomials. We first compute, from (3) and (18), the following bosonic p-adic
integrals

2log(1 +2)(1 4+ 2)
1 2y+1+y d —
A L Ty

and

o n

zZ

(14277 duo(y) =) /(2y+1+1/)nduo(y)—,,
LZp n=0"Zp "

which means

* 1 z" s "
— 2 1 d — = d —.
;z/ZP(H FPIndno0) go 0

Thus, we acquire the Volkenborn integral representations of d,, () as given below.

Theorem 2.1: The following Volkenborn integral representation of d,(y)
1
dir) =3 [ @+ 149 du00)
P
holds for n > 0 and in addition, utilizing (11), the following relation
n 1 + y
du(y) = T;)sl(n, m)2" By, (T) (19)

holds for n > 0.
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Remark 2.1: The following p-adic integral representation
1
d=3 [ @+ Dudua)
2 Z,

holds for n > 0.

Kim and Kim [9] introduced the type 2 Daehee polynomials of order 8 € R denoting
the set of all real numbers by

oo n Y /3

. (20)
— (42— A+2)7)°

In this particular case y =0, d,(f} ) 0) := dﬁ,ﬂ ) are termed the type 2 Daehee numbers of
order B.
By means of (20) and choosing 8 = r € N, we have

oo n l r
z og(l +z)
Y dPp= =1 +2)Y ( ) —. (21)
n=0 h: ((1 +2)—(142) )
If we change z by e3 — 1 in (21), we then acquire
2 m
r o0 ez —1 00 n m
z vz ( ) 1 z
—— ) e =Y dVp)~——L = = dD (S (nm) | = (22
and also
r 00 n 00 m 00 n n
z ¥ _ nZ m % _ N1 oo wm|Z
(2m) - E S =3 (3 ()] 5
n=0 m=0 n=0 \m=0

Thus, by means of (22) and (23), we provide the following relation.

Theorem 2.2: For n > 0, we have

” (n> Ly o= LS 4045y m)
Do oty = o D A ()82 m).
mj?2 2 s

m=0
For r € Ny, upon setting = —r and changing z by e? — 1in (21), we then investigate
o Sl e (L Z"
| ———) =24y -n'=3 (5 AT WsmD |
=0 n=0 =0
and also
( z z\T"
e2 _e_§> z rloo (el —e ) 1l Xy o 2
3V — LedV 2 -
z = r! oz 2" Z i TGn)

n=0 I=r
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ad yhz" e le(l—i—r,r)

— on P I+ !

S ()

Thereby, we give the following result.

Theorem 2.3: For n,r € Ny, we have

n 2lT(1 : n—l n _y
> (7)< Y s
1=0 ( 1 ) 1=0

and particularly,

(n—',—r
Tn+rr) =

n ()

If we change z by 21log(1 + z) in (13), we observe that

e 1 (log(1 + 2))
((+2-A+97") == —=F—=Tdn?

I=r
0 00 o 0 n o
- Z T, 7) Zz’sl(n, l)H — Z (Z S1(n, )T, r)2’> ~
I=r n=I n=r \|=r
and

s 1 (log(1+2)) " (log(1 +2))
(1+2—1+27") == (log(1+2)) " (log( _12‘2
o+ - 0+27)

= ZSl(m r)—z 7)7‘ :Z(Z( )Sl(m r)d( r)> L

n=r

which provide the following relationship.

Theorem 2.4: The following relationship

Y ST =Y (7) Sird 7

l=l’ l:r

holds for n,r > 0.

Note that the higher-order cosecant polynomials are defined by (see [5,8,16])

i n B

B, \F 2z vz
R e e
n=0

n n i

) (1) =) n\ 2'S1(n, 1)
E d "S$(n ) and d, " = E (l) P
1=0

(24)
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In this special case y = 0, fo ) 0) := Dﬁ,ﬂ ) are termed the higher-order cosecant numbers.
If we change z by log(1 + z) in (24), we then obtain

(1+2)Y

B 00 m
(log(1 + 2)) _ Z DB () (log(1 + 2))
(1+2-a+2 0 = m!

_ Z zﬂpﬁf)(y) Z Sy (n, m)% - Z <2ﬂ Z Si(n, m)Dﬁf)()/)) %,

m=0 n=m n=0 m=0

which means the following result.

Theorem 2.5: The following correlation

4l () =283 DY ()$1(n,m)

m=0

holds forn > 0 and B € R.

Kim-Kim [9] defined the higher-order type 2 Bernoulli polynomials by

S n B
Yo = ( ° ) e, (25)
= n! e? —e 2

In this particular case y = 0, bi,ﬁ ) 0) := bﬁ,ﬁ ) are termed the higher-order type 2 Bernoulli
numbers.
If we change z by log(1 + z) in (25), we then attain
(log(1 +2)° (1 +2)7 i (log(1 + 2))"

(1+2-0+2 1) ‘=  m

— n;z:ﬁf%ﬂ n;nsl(n, m)i—]: = (Z S, m)bs,'f)(y)) Z_f:

n=0 \m=0

bl (v)

and also

id(ﬂ)(y)i _ (log(1 +z))ﬂ (1+2)Y
ST (- a9

which means the following relationship.

Theorem 2.6: The following relationship

a0 ()= b ()$1(n,m)

m=0

is valid for B € R and n € Ny.
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It is observed that

/z )y (1 + 2) T4 q0(y1) dio(v2) - - - Ao (1)
P P

r times

(log(l —|—z))r , > o i
_(a+wy—a+erAl+@ _Z;%(W”V

which gives

d(V) ;
(” '/ /’C”+' +V)+r+y)mmwn o).
Zy Zy

n
r times
Here, we define the conjugate higher-order type 2 Daehee polynomials by

o0

Zﬁ(ﬁ)(y)f _ (427 (42 log(1 +2)”
' (1 +2 -1 +21)°

(26)

In this particular case y = 0, a7 (0) :=d\ are termed the conjugate higher-order type 2
Daehee numbers. By means of (26), we derive

/i--- (14 2)~ %Y quo (1) - - - dpo(yr)
Zp Zyp

r times

(1+2)log1+2) \" _ oo, 2"
— 14 —
=(1+2 ((1+z)—(1+z)—1) —ngzodn ()/)n!,

which means

+oty)
A0 ) = /Q /2 ( i v V)du004> dpelr). (27)
P P

n
r times

By formula (27), it is readily seen that

1 —i )+
—d; () =f / < & ) y> dpo(y) - - dpo(yy)
n: Zp Zp

n
r times
i+ + )+
:f / (yl vr y)(—l)ndMO(Vl)"'dMO(Vr)
Zp Zp "
——
r times

zz(n—1>/ / (()/1+...+J/r)+V)(_l)nduo(yl)u_duo(yr)
m=o \* T M/ )z, Zy n
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_ (-1 (=D" )
n—m/) m ™’

m=1

which implies the following formulas.

Theorem 2.7: Each of the following relations

Xn: n—1 (_l)nd(y) _ gy)(”)
n—m/) m ™" n!

m=1

and
i (n - 1) (~D)"y _ e (1)
—\n—m m! " n!

is valid for n,r € Ny.

3. Conclusion

In this paper, the higher-order type 2 Dachee polynomials have been studied and several
of their relations and properties have been derived. Some p-adic integral representations
of type 2 Dacehee polynomials and the higher-order type 2 Daehee polynomials have been
acquired. Then, diverse identities and relations related to the central factorial numbers
of the second and the Stirling numbers of the second and the first kinds have been
investigated. Moreover, the conjugate higher-order type 2 Dachee polynomials have been
considered and two relationships including the type 2 Daehee polynomials of order g and
the conjugate higher-order type 2 Dachee polynomials have been provided.
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