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 In this study operating room scheduling (ORS) problem is addressed in multi-

resource manner. In the addressed problem, besides operating rooms (ORs) and 

surgeons, the anesthesia team is also considered as an additional resource. The 

surgeon(s) who will perform the operation have already been assigned to the 

patients and is a dedicated resource. The assignment of the anesthesia team has 

been considered as a decision problem and a flexible resource. In this study, 

cooperative operations are also considered. A mixed integer linear programming 

(MILP) model is proposed for the problem. Since the problem is NP-hard, an 

artificial bee colony (ABC) algorithm is proposed for the problem. The solutions 

of the ABC are compared with the MILP model and random search.  
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1. Introduction 

For many hospitals, operating rooms (ORs) are the 

costliest unit, but they are also the unit that makes the 

biggest contribution to the hospital's income. 

Therefore, the planning of ORs is important for 

hospitals [1]. Scheduling activities are important in the 

effective management of ORs. Patient assignment to 

ORs and determining the starting time of the operations 

becomes a complex problem due to additional 

resources [2]. In many hospitals, ORs are scheduled 

manually. As a result of the manual solutions of such a 

complex problem, ineffective schedules are created. By 

using optimization methods in the operating room 

scheduling (ORS) problem, it may be possible for the 

hospital management to serve more effectively to 

patients and managed the ORs efficiently [2]. 

ORS problems are an important problem that is studied 

frequently. Literature reviews on the ORS problem are 

reachable to related articles [3-8]. ORS problems can 

be classified according to various criteria. These 

criteria can be considered as the resources, resource 

types, scheduling period, objective functions, patient 

types, solution methods and additional features [9]. 

ORS problems are resource-constrained problems. The 

limited resources considered in ORS problems are 

surgeons, downstream beds [10], nurses, anesthesia 

team and equipment/tools. If the resources under 

consideration have been previously assigned to 

patients, they are classified as dedicated resources. If 

the assignment of resources is considered as a decision 

problem, it is classified as flexible resources [11]. 

According to the scheduling period, it is considered as 

a single/multi period. If scheduling is done for only one 

day, it is called a single period, if it is done for more 

than one day, it is called multi-period [12]. The 

scheduling of ORs is considered in two stages in 

hospitals. In the first stage, the patient's operation is 

assigned to a future date and it is long-term planning. 

The second stage is short-term planning, and it is the 

stage of determining the operation start times and 

assignment of ORs to patients on the relevant day. In 

short-term planning, only daily planning is done in 

hospitals [2].  

Classification of the patients can be made as elective 

and emergency patients. In some studies, only elective 

patients are considered. Because in many hospitals, 

separate ORs are dedicated for emergency surgeries 

[2]. There are also studies that consider both elective 

and emergency patients [13]. In some studies, patients 

are prioritized according to the urgency of their surgery 

[14].  

Many different objective functions are considered in 

ORS problems. There are multi-objective studies as 

well as studies that consider single objective function. 

Minimizing total cost, tardiness, overtime, idle time, 

waiting time, number of ORs, total completion time, 

maximum completion time (makespan), maximizing 

resource balancing [15], maximizing number of 

patients [16], service level are objective functions of the 

ORS problems [4].  
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Solution approaches of the ORS problems can be 

classified as exact and heuristic solutions. Since ORS 

problems are NP-hard problems, heuristic algorithms 

were proposed for solving large-sized problems [17]. 

Heuristic algorithms do not guarantee the best solution. 

Mathematical modeling [18], decomposition 

algorithms ([19] and [20]), branch and price, branch 

and cut [21], column generation [22] are exact solution 

methods that guarantee the best solution. 

Real-life constraints should be taken into account as 

much as possible while defining the ORS problem. In 

other words, the problem should reflect the real-life 

problem as much as possible [23]. For this purpose, 

additional features are taken into account in many 

studies. In some studies, some parameters are 

considered fuzzy or stochastic [11]. Another feature 

that has been addressed is necessity of more than one 

surgeon in an operation [2]. Such operations are 

considered as cooperative operations. All employed 

surgeons must be available in order to perform the 

operation of the relevant patient. In some studies, 

making up of the team is considered [24]. In addition, 

the skill compatibility feature and the eligibilities on 

ORs and surgeons are considered. Not every patient can 

be assigned to every OR or surgeon with eligibility 

constraints [2]. 

The ORS literature was reviewed considering the 

classification of the problem. In most of the early 

studies on the subject, only surgeons and/or the ORs 

were considered as resources [25]. Fei et al. [25], 

proposed a column generation method for the solution 

of ORS problem. Fei et al. [26], proposed hybrid 

genetic algorithm (GA) for ORS problem. They 

considered multi- period feature. Vijayakumar et al. 

[27], considered nurses and equipment as additional 

resources. They proposed heuristic algorithms. 

Priorities of patients was taken into account. Agnetis et 

al. [19], proposed a decomposition algorithm for ORS 

problem. Fügener et al. [28], considered multiple 

downstream units for ORS problem. They proposed an 

exact solution method. Aringhieri et al. [29], proposed 

two-level heuristic algorithm for the ORS problem with 

downstream beds. Jebali et al. [30], used stochastic 

programming for ORS with downstream beds. They 

considered multi- period feature. Pariente et al. [31], 

proposed heuristic algorithm for ORS problem with 

objective function of maximizing service level. They 

considered priorities of patients. Wang et al. [32], 

considered nurses and anesthesiologist as additional 

resources for the solution of ORS problems. Constraint 

programming was used in the study. Heydari and Soudi 

[33], used stochastic programming for ORS problem. 

They considered downstream beds and 

elective/emergency patients. Vali- Siar et al. [12], 

considered nurses, anesthesiologist and downstream 

beds as additional resources. They proposed genetic 

algorithm (GA). Hamid et al. [24], considered 

downstream beds and equipment as additional 

resources for the ORS problem. NSGA II algorithm 

was proposed for the solution of the problem.  Addis et 

al. [34], used robust optimization for multi- period ORS 

problem. Ahmed and Ali [35], used fuzzy TOPSIS and 

MILP model for the problem of ORS with objective 

functions of maximizing patient preferences and 

minimizing total cost. Coban [36], proposed a heuristic 

and an optimization model for the ORS problem with 

equipment. Khaniyev et al. [37], proposed heuristic 

algorithms for ORS problem. They considered 

uncertainty on parameters. Zhang et al. [11], used 

stochastic programming for the problem of ORS with 

downstream beds. Objective function of the problem is 

minimizing total cost. Britt et al. [38], considered 

multi- period ORS problem. Downstream beds and 

equipment were taken into account as additional 

resources. Roshanaei and Naderi [21], used benders 

decomposition algorithm for ORS problem. The 

objective function of the problem was maximization 

total scheduled surgical times. Park et al. [2], proposed 

a mathematical model for ORS problem with 

preferences and cooperative operations. Rachuba et al. 

[39], taken into account downstream beds for the 

problem of ORS. Simulation is used for the solution of 

the problem. Mazloumian et al. [18], proposed a robust 

multi- objective integer linear programming (MOILP) 

model for the solution of ORS problem with 

downstream beds.  Azaiez et al. [40], proposed heuristic 

algorithm for ORS problem with makespan 

minimization. Makboul et al. [41], considered priorities 

of patients for ORS problem. Robust optimization was 

used for the problem. Oliveira et al. [42], considered 

anesthesiologist as an additional resource for ORS 

problem with multi- period. Integer linear 

programming (ILP) model was proposed for the 

problem. Lotfi and Behnamian [1], proposed multi- 

objective variable neighborhood search algorithm for 

multi- period ORS problem.  

Heuristic algorithms have been proposed in very few of 

the studies in which additional resources such as 

nurses, downstream beds, and anesthesia team are 

taken into account. In many studies, only surgeons are 

taken as additional resources. In addition, there are 

studies that consider downstream beds as additional 

resources. There are few studies that consider the 

anesthesia team ([32],[12],[42]). Among these studies, 

Vali-Siar et al. [12] proposed a GA. Other studies used 

optimization or simulation methods.  

In ORS problems, setup times have been neglected in 

many studies. However, in real life, the ORs are being 

prepared for the next operation when an operation is 

completed. Different equipment and tools are used in 

different operations. Some tools and equipment are 

mobile. After an operation is completed, setup must 

begin for the next operation immediately. During the 

setup phase, the cleaning of the OR, the transportation 

of the necessary tools, the sterilization of the used 

resources, the preparation of the surgeons, nurses and 

the anesthesia team are carried out [43]. Setup of an 

operation varies depending on the operation scheduled 

before it in the same OR. For example, when two 

operations using the same mobile devices are scheduled 
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sequentially, the setup time may be shortened 

according to the sequential scheduling of operations 

using different mobile devices. In other words, setup 

times are sequence dependent [44]. There are few 

studies that consider sequence-dependent setup times in 

ORS problems. It was observed that additional 

resources considered in ORS problems such as the 

surgeons, beds and anesthesia team were neglected in 

many studies about ORS problem with setups [44]. 

Arnaout and Kulbashian [45], considered sequence 

dependent setup times in the ORS problem. Additional 

resources were not considered in the problem. The 

objective function was makespan minimization. 

Simulation was used for the problem. Arnout [46], 

proposed a heuristic algorithm for the solution of the 

ORS problem with sequence dependent setup times. 

Additional resources were not taken into account. 

Hamid et al. [43], used simulation for the ORS problem 

with sequence dependent setup times. Intensive care 

unit (ICU) beds were taken into account as an 

additional resource. The objective function is 

makespan minimization. Zhao and Li [47], considered 

sequence dependent setup times in the ORS problem. 

The use of additional resources was not taken into 

account in the study. They minimized the total cost. A 

nonlinear programming model and constraint 

programming used to solve the problem. 

In this study, the problem is defined by considering a 

state hospital. Anesthesia teams are taken into account 

in the study. Anesthesia teams consist of specialist 

doctors, nurses and anesthesia technicians. An 

anesthesia team accompanies the patient during the 

operation. Assigning an anesthesia team to patients is 

an decision problem. In other words, the anesthesia 

team is a flexible resource. The relevant anesthesia 

team can serve only one patient at a time. Since there 

are limited number of anesthesia teams in hospitals, 

patient waiting occur if there is no team available. In 

addition, the case of more than one surgeon 

involvement in some operations is considered. 

Surgeons can only perform one operation at a time. The 

patient's operation may be start as long as the employed 

surgeon or surgeons are idle. Since the assignment of 

surgeon(s) to operations are predetermined, surgeons 

are considered as a dedicated resource. In addition, the 

setup time of the OR for the relevant patient varies 

depending on the previous operation in the same OR. 

In other words, operation setup times are sequence 

dependent. By solving the problem, the anesthesia team 

and OR are assigned to the patients and the order of the 

operation is determined. A MILP model and ABC 

algorithm are proposed for the problem. The proposed 

algorithm is compared with the MILP and random 

search. 

According to the literature review, it was seen that 

sequence-dependent setup times were not addressed in 

many studies [48]. In addition, heuristic algorithm has 

not been proposed for the ORS problems, which took 

into account the sequence-dependent setup times and 

additional flexible/ dedicated resources. Literature is 

given in Appendix Table A1. 

In this study an ORS problem is addressed that is not 

considered in the literature. Sequence dependent setup 

times, both flexible and dedicated resources are taken 

into account and a very complex operating room 

scheduling problem is addressed. In many studies that 

is proposed heuristic algorithm to similar problems, 

mathematical models are used to calculate objective 

function value of the solutions, due to complexity of the 

obtaining a feasible solution considering all resources. 

Collaboration with optimization model may be time 

consuming. In this study a heuristic algorithm is 

proposed to solve this complex problem. The unique 

value of the ABC algorithm is the decoding algorithm, 

calculation of objective function of the solutions, 

considering all flexible/dedicated resources.   

With this study, a heuristic algorithm is proposed to a 

problem that is not considered before. The success of 

the proposed algorithm is demonstrated comparing the 

results of heuristic with MILP model results through 

small size problems. Only small size test problems are 

solvable in reasonable time (3600 seconds). For large 

size test problems, the ABC algorithm is compared 

with random search.    

  

In the second section of the study, the problem 

definition and mathematical model are given. In the 

section third, heuristic algorithm is given. In the fourth 

section, test problems are derived and parameters of 

heuristic algorithms are determined. In addition, the 

success of the heuristic is demonstrated. The last 

section is the conclusion section. 

2. Optimization model 

The addressed problem is described in detail in this 

section. A MILP model has been proposed. The 

proposed model is applied to an example problem.  

2.1. Problem definition 

A state hospital was taken into account in defining the 

problem under consideration. In the study, operational 

(short time) scheduling activity was addressed. The 

assignment of OR to patients, the order of the 

operations, assignment of anesthesia team to operations 

are achieved by the solution of the addressed problem. 

In order to perform the operation of n number of 

patients, the patient must be assigned to an OR among 

m ORs. An operation of a patient may begin as long as 

the surgeon or surgeons who will perform the operation 

are available and an anesthesia team must be assigned 

to the operation of the patient. Each surgeon and 

anesthesia team can only operate on one patient at a 

time. Some operations may require more than one 

surgeon. If the surgeon or at least one of the surgeons 

who will perform the operation is in the operation of 

another patient or if there is no idle anesthesia team, 

patient waiting occur. Since both surgeons and the 

anesthesia team are taken into account, a multi-resource 

problem is defined. Since the surgeon(s) who will 
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perform the operation of the patient is determined 

before the operation day, surgeons are a dedicated 

resource. The anesthesia team to be assigned to the 

patient is considered as a decision problem and is a 

flexible resource. Before starting the operation, OR 

must be prepared for the operation. Setup is done in the 

same OR immediately after the operation of the 

previous patient is completed. In the setup phase, the 

cleaning of the OR, sterilization and positioning of the 

necessary equipment and devices are conducted. The 

setup of the operations can be done simultaneously in 

different ORs. Setup times are sequence dependent. 

 

Characteristics of the model: 

• Two different type of resource is considered 

as flexible and dedicated resource. Surgeon(s) 

that perform each operation is predetermined 

and is a dedicated resource. The assignment of 

anesthesia team to operations is conducted by 

the MILP model and is a decision problem. 

The anesthesia teams are a flexible resource. 

• Appropriate constraints have been added to 

the model so that each resource can only 

perform one operation at a time. 

• Before the operation, setup of the operation is 

conducted. 

• More than one surgeon may be involved in an 

operation. 

• If at least one surgeon that will involve in an 

operation is in another operation at a time, 

there will be a waiting times of patients. 

• If an anesthesia team is needed for different 

operations at the same time and there is no 

anesthesia team available, waiting times will 

be occurred. 

 

Assumptions: 

• The operation times and setup times are 

deterministic. 

• The surgeon(s) that perform each operation 

are predetermined. 

• The setup of an operation is conducted after 

the completion of the previous operation.  

• Patients do not have anesthesia team 

preference. 

• All patients have equal priority. 

• The resource responsible for the setup is 

ignored. 

2.2. MILP model 

Sets and Indices 

p, l and k show patient indices and N={p,l,k| 

p=l=k=1,…,n} 

o shows OR index and M={o| o=1,…,m} 

r shows position index and N={r| r=1,…,n} 

d shows surgeon index and U={d| d=1,…,u} 

g shows anesthesia team and A={g| g=1,…,a} 

 

 

Parameters 

𝑡𝑝: Operation time of the patient p 

𝑆𝑄𝑝: Setup of OR for patient p that is scheduled on the 

first position 

𝑆𝑇𝑝,𝑙: Setup time of OR for patient l that is scheduled 

after patient p 

B: Very big number 

𝐻𝑝,𝑑: {
1, 𝐼𝑓 𝑓 𝑠𝑢𝑟𝑔𝑒𝑜𝑛 𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Decision Variables 

𝑦𝑝,𝑟,𝑜: {
1, 𝐼𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑟𝑜𝑜𝑚 𝑜 𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑟
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 

𝑥𝑝,𝑔: {
1, 𝐼𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎𝑛𝑒𝑠𝑡ℎ𝑒𝑠𝑖𝑎 𝑡𝑒𝑎𝑚 𝑔
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑓𝑝,𝑙:

{

1, 𝐼𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓  𝑝 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛
 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑙

0, 𝐼𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓  𝑙 𝑖𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛
𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑝

 

𝐶𝑝: Operation completion time of patient p 

𝑊𝑝: Operation starting time of patient p 

𝐼𝑝: Waiting time of patient p 

𝑇𝑙: Setup completion time of patient l 

𝐶𝑚𝑎𝑥: Maximum completion time 

 

Model 

Min 𝑍1= 𝐶𝑚𝑎𝑥                 (1) 

𝑇𝑙 + 𝐵(1 − 𝑦𝑙,𝑟,𝑜) ≥ 𝑆𝑄𝑙     ∀ l, r, o and r=1               (2) 

𝑇𝑙 − 𝐵(1 − 𝑦𝑙,𝑟,𝑜) ≤ 𝑆𝑄𝑙    ∀ l, r, o and r=1                    (3) 

𝑇𝑙 + 𝐵(2 − 𝑦𝑙,𝑟,𝑜 − 𝑦𝑘,𝑟−1,𝑜) ≥ 𝐶𝑘 + 𝑆𝑇𝑘,𝑙   

 ∀ k, l, r, o, l≠k,  r >1               (4) 

𝑇𝑙 − 𝐵(2 − 𝑦𝑙,𝑟,𝑜 − 𝑦𝑘,𝑟−1,𝑜) ≤ 𝐶𝑘 + 𝑆𝑇𝑘,𝑙    

∀ k, l, r, o, l≠k,  r >1                            (5) 

𝐶𝑙 = 𝑇𝑙 + 𝑡𝑙 + 𝐼𝑙   ∀ l                            (6) 

𝑊𝑝 = 𝑇𝑝 + 𝐼𝑝 ∀𝑝               (7) 

𝐶𝑙 ≤ 𝑊𝑝 + 𝐵𝑓𝑝,𝑙 + 𝐵(2 − 𝑥𝑙,𝑔 − 𝑥𝑝,𝑔) 

 ∀𝑝, 𝑙, 𝑔 𝑎𝑛𝑑 𝑝 < 𝑙               (8) 

𝐶𝑝 ≤ 𝑊𝑙 + 𝐵(1 − 𝑓𝑝,𝑙) + 𝐵(2 − 𝑥𝑙,𝑔 − 𝑥𝑝,𝑔) 

 ∀𝑝, 𝑙, 𝑔 𝑎𝑛𝑑 𝑝 < 𝑙                 (9) 

𝐶𝑙 ≤ 𝑊𝑝 + 𝐵𝑓𝑝,𝑙 + 𝐵(2 − 𝐻𝑝,𝑑 − 𝐻𝑙,𝑑) 

∀𝑝, 𝑙, 𝑑 𝑎𝑛𝑑 𝑝 < 𝑙             (10) 

𝐶𝑝 ≤ 𝑊𝑙 + 𝐵(1 − 𝑓𝑝,𝑙) + 𝐵(2 − 𝐻𝑝,𝑑 − 𝐻𝑙,𝑑) −

 ∀𝑝, 𝑙, 𝑑 𝑎𝑛𝑑 𝑝 < 𝑙                                       (11) 

∑ 𝑥𝑝,𝑔𝑔 = 1  ∀𝑝            (12) 

∑ 𝑦𝑝,𝑟,𝑜𝑝 ≤ 1  ∀ r, o             (13) 
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∑ ∑ 𝑦𝑝,𝑟,𝑜𝑜𝑟 = 1  ∀ p             (14) 

∑ 𝑦𝑝,𝑟,𝑜𝑝 − ∑ 𝑦𝑙,𝑟−1,𝑜𝑙 ≤ 0    ∀ r, o and r >1           (15) 

𝐶𝑚𝑎𝑥 ≥ 𝐶𝑝    ∀ 𝑝             (16) 

𝑦𝑝,𝑟,𝑜, 𝑥𝑝,𝑔, 𝑓𝑝,𝑙 ⋲ {0,1} and 

 𝐶𝑝, 𝑇𝑙 , 𝑉𝑝, 𝐼𝑝, 𝐶𝑚𝑎𝑥 ≥ 0             (17) 

Constraint (1) minimizes makespan. Constraints (2-3) 

calculate the setup completion time of the patients that 

is scheduled on the first position of each OR. 

Constraints (4-5) calculate the setup completion time of 

the patients that is scheduled except for the first 

position of each OR. Constraint (6) calculates the 

operation completion time of the patients. Constraint 

(7) calculates the operation starting time of the patients. 

Constraints (8-9) prevent simultaneous operations on 

patients assigned to the same anesthesia team. 

Constraints (10-11) prevent simultaneous operations on 

patients assigned to the same surgeon(s). Constraint 

(12) ensures that an anesthesia team is assigned to each 

patient. Constraint (13) satisfied that maximum one 

patient can be assigned to a position of an OR. 

Constraint (14) provides that assignment of each 

patient to an OR. Constraint (15) allows patients to be 

assigned in sequence. Constraint (16) calculates 𝐶𝑚𝑎𝑥. 

Constraints (17) are sign constraints. 

An example is given in Figure 1. Parameters of the 

problem is given in Appendix Table B1. Accordingly, 

patients 1,8, and 2 were assigned to OR 1, patients 4, 7 

and 3 were assigned to OR 2, and patients 9, 5 and 6 

were assigned to OR 3. First Anesthesia team was 

assigned to the 1st patient, and the 2nd Anesthesia team 

was assigned to the 4th patient. The anesthesia team 

assigned to patients is indicated in parentheses next to 

the patient number in the Figure 1. The anesthesia team 

assigned to other patients is given in the Figure 1. (Dx) 

denotes the required surgeon(s) for operation of the 

relevant patient. For example, for patient 6 the second 

surgeon (D2) employed for the operation. If the Figure 

1 is examined, it is seen that the anesthesia teams and 

surgeon(s) are performed only one operation at the 

same time. The setups of operations can be done at the 

same time. The setup of the operations starts as soon as 

the previous operation is completed in the same OR. 

The objective function of the optimal solution is 814.  

 

 
Figure 1. Gantt Chart of the optimal schedule 

 

3. ABC algorithm 

3.1. Steps of the algorithm 

ABC algorithm was proposed in 2005 by Karaboğa 

[49]. ABC algorithm was designed by modeling the 

foraging behavior of bees. ABC algorithm is an 

algorithm based on swarm intelligence. The algorithm 

has 3 stages: employed bee stage, onlooker bee stage 

and scout bee stage. The algorithm makes 

intensification at the employed and onlooker bee 

stages. It makes diversification at the scout bee stage. 

At the end of the employed bee stage, the probability 

value of the solutions is calculated. Accordingly, the 

probability values of high-quality solutions are also 

high. Probability values are taken into account when 

choosing a solution at the onlooker bee stage. High 

quality solutions are more likely to be selected [50]. 

New solution is generated for selected solution by one 

of the insertion or swap methods. If the new solution 

produced is a better solution, the existing resource is 

replaced with the new solution, otherwise the 𝐼𝑖  value 

of the relevant resource is increased by one. In the 

algorithm, bees are in a position to turn to higher quality 

resources. For resources whose 𝐼𝑖  value is equal to the 

limit value, the scout bee stage is run and the related 

solution is replaced with a randomly derived solution. 

The steps continue until the predetermined number of 

iterations is achieved [51]. The ABC algorithm is given 

below [49,51]. 

 
Procedure: ABC algorithm 

Input: Problem parameters, Iteration 

number (T), Limit value, Population 

size (2N) 

Output: Optimal or near optimal 

solution 

Construct initial population with 

size N randomly and calculate the 

fitness (f(i)) of the each solution; 

t←0; 

While (t<T) 

Assume trial value of each 

resource 0; 

 //Employed bee phase 

 For i=1:N 

Match resource i with a 

resource randomly and 

generate a new resource 

by two point crossover 

and calculate fitness 

value of the new 

resource; 

Setup

OR 1 8 (2) (D1) 2 (1) (D2) Operation

OR 2 4 (2) (D4)

OR 3 6 (2) (D2)

3 (1) (D2-D3-D4)

9 (1) (D2)

7 (2) (D1-D3)

1 (1) (D2)

5 (1) (D2-D3-D4)

21 157 315 347 407 447 610 729

29 94 110 204 237 453 610

15711 177 315 453 488 729 814
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If new resource better 

than resource i 

Replace resource i 

with the new 

resource; 

trial(i)←0; 

  Else 

      trial(i)←trial(i)+1; 

  End 

 End 

Determine the maximum fitness 

value as F; 

Calculate probability value of 

resources; 

 Probability(i)← 0.9 (
𝑓(𝑖)

F
) + 0.1; 

 //Onlooker bee phase 

Assign each onlooker bee to a 

resource considering 

Probability values; 

For i=1:N 

Match resource i with a 

resource randomly and 

generate a new resource 

by two point crossover 

and calculate fitness 

value of the new 

resource; 

If new resource better 

than resource i 

Replace resource i 

with the new 

resource; 

trial(i)←0; 

  Else 

     trial(i)← trial(i)+1; 

  End 

 End 

Record the resource with best 

fitness value; 

 //Scout bee phase 

Find the resource with maximum 

trial number as i*; 

 If (trial(i*)>limit) 

Replace resource i with 

a random solution; 

  trial(i*)←0; 

 End  

 t←t+1; 

End 

Fitness values of the solutions are calculated by 

Equation 18. Z(i) is the objective function value of the 

resource i. 

f(i)={

1

1+𝑍(𝑖)
    𝑖𝑓  𝑍 ≥ 0

1 + |𝑍(𝑖)|      𝑖𝑓 𝑍 < 0
                         (18) 

3.2. Representation of the solutions and decoding 

algorithm 

The matrix of 𝑉𝑝
𝑃𝑜𝑝

 is used to represent the solutions. 

Pop denotes the number of individuals in the 

population. The 𝑉𝑝
𝑃𝑜𝑝

 matrix consists of the number of 

Pop rows and the number of n (number of patients) 

columns. The number of columns is equal to the 

number of patients and the number of rows is equal to 

the population size. 𝑉𝑝
𝑖 ⋲[1,n] and 𝑉𝑝

𝑖 ≠ 𝑉𝑙
𝑖 . Each row 

constitutes of permutation representation of the 

patients. In other words, patients are ranked randomly 

in each row of the 𝑉𝑝
𝑃𝑜𝑝

 matrix. The representation of 

the solutions is given in Figure 2. The assigned OR and 

the anesthesia team of patients are determined by the 

decoding algorithm. Therefore, this information is not 

included in the representation of the solutions. 

 
1st Ind. 𝑉1

1 𝑉2
1 … 𝑉𝑛

1  

2nd Ind. 𝑉1
2 𝑉2

2 … 𝑉𝑛
2      𝑉𝑝

𝑖 ⋲[1,n] and  

⋮ ⋮ ⋮ ⋮ ⋮ 𝑉𝑝
𝑖 ≠ 𝑉𝑙

𝑖 ∀𝑝, 𝑖, 𝑙 

popth Ind. 𝑉1
𝑝𝑜𝑝

 𝑉2
𝑝𝑜𝑝

 … 𝑉𝑛
𝑝𝑜𝑝

  

Figure 2. Representation of the solutions 

 

Objective function of the number of Pop solutions are 

calculated by decoding algorithm. With the decoding 

algorithm, the patients are assigned to the ORs and the 

anesthesia team and order of the operations are 

determined. In addition, anesthesia teams and 

surgeon(s) operate only one operation at the same time. 

Some of the abbreviations used in the algorithm are 

given in the description of the MILP model. Newly 

defined abbreviations are given below. 

𝑂𝑇𝑜 : Operation completion time of the last patient that 

is assigned to OR o 

𝑜∗: The OR that the next patient will be assigned 

𝑔𝑝: The anesthesia team that is assigned to patient p 

𝑃𝐴𝑔: Operation completion time of the patient that is 

assigned to anesthesia team g 

𝑝𝑜
′ : The patient that is last assigned to OR o 

𝑘𝑜: The number of patients that is assigned to OR o 

𝑠𝑒𝑞𝑘
𝑜: The patient that is scheduled the order of k in OR 

o  

The operation times of the patient 𝑉𝑝
1 that is assigned 

to OR 𝑜′ and the patient 𝑉𝑙
1 that is assigned to OR 𝑜′′ 

is not overlap as long as the one of the following 

conditions is met.   

Case 1: The operation completion time of patient 𝑉𝑝
1 is 

smaller than operation starting time of patient 𝑉𝑙
1. This 

situation is represented by Equation 19. Case 1 is 

shown in Figure 3.  

 

 𝐶𝑉𝑝
1 ≤ 𝑊𝑉𝑙

1              (19) 

 
 

𝑜′ … 𝑉𝑝−1
1  Setup 𝑉𝑝

1 … 𝑉𝑝
1  

𝑜′′  … 𝑉𝑙−1
1  Setup  𝑉𝑙

1 𝑉𝑙
1 

 ⋮ 

 

Figure 3. Case 1 

In Figure 3, the operation time of  𝑉𝑝
1 and 𝑉𝑙

1  do not 

𝑇𝑉𝑝
1 𝑊𝑉𝑝

1 𝐶𝑉𝑝
1 

𝑊𝑉𝑙
1 

𝑊𝑉𝑝−1
1  𝐶𝑉𝑝−1

1  

𝐶𝑉𝑙
1 𝑇𝑉𝑙

1 𝐶𝑉𝑙−1
1  𝑊𝑉𝑙−1

1  
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overlap. Because the operation completion time of 

patient 𝑉𝑝
1 is equal to the operation start time of patient 

𝑉𝑙
1.  

Case 2: The operation start time of patient 𝑉𝑝
1 is greater 

than the operation completion time of patient 𝑉𝑙
1. This 

situation is represented by Equation 20. Case 2 is 

shown in Figure 4. 

 

 𝑊𝑉𝑝
1 ≥ 𝐶𝑉𝑙

1              (20)  

 

  

𝑜′ … 𝑉𝑝−1
1  Setup 𝑉𝑝

1 … 𝑉𝑝
1 

𝑜′′ … 𝑉𝑙−1
1  Setup  𝑉𝑙

1 𝑉𝑙
1  

 

 

Figure 4. Case 2 

 

In Figure 4, the operation time of  𝑉𝑝
1 and 𝑉𝑙

1  do not 

overlap. Because the operation starting time of patient 

𝑉𝑝
1 is greater than the operation completion time of 

patient 𝑉𝑙
1.  

By using the decoding algorithm, feasible solutions are 

obtained from each solution representation and the 

objective functions are calculated. 

In the decoding algorithm, first of all, for each solution, 

the 𝑂𝑇𝑜 values, which shows the operation completion 

time of the patient who was last assigned to the OR o, 

are taken as 0. The first patient in each row is assigned 

to the first OR. In the first solution, the first patient is 

shown as patient 𝑉1
1 and the OR to which it will be 

assigned is 𝑜∗. The setup of the first patient 𝑉1
1 begins 

at time 0. The setup completion time of the patient 𝑉1
1 

(𝑇𝑉1
1) is calculated. Since patient 𝑉1

1 is in the first order 

of the OR it is calculated as 𝑇𝑉1
1 = 𝑆𝑄𝑉1

1. After the 

setup is completed, the operation starts and the 

operation start time is shown as 𝑊𝑉1
1. The operation 

completion time (𝐶𝑉1
1)  is calculated as 𝑊𝑉1

1+𝑡𝑉1
1. The 

time that OR is used is recorded as an interval 

(𝑊𝑉1
1−𝐶𝑉1

1). The patient is randomly assigned to the 

𝑔𝑉1
1

∗  anesthesia team. The operation time of the 

anesthesia team is taken as the interval (𝑊𝑉1
1 − 𝑃𝐴𝑉1

1)  

and the value of 𝑃𝐴𝑉1
1 is equal to the value of 𝐶𝑉1

1. 

Patient 𝑉1
1 who was last assigned to OR 𝑜∗ is recorded 

as 𝑝𝑜∗
′ . The next patient 𝑉2

1 is assigned to the OR 𝑜∗ that 

is the smallest setup completion time (𝑜∗ ←
𝑎𝑟𝑔 min

𝑜
(𝑂𝑇𝑂 + 𝑆𝑇𝑝𝑜

′ ,𝑉2
1)). 𝑇𝑉2

1 value is calculated as 

(𝑂𝑇𝑂 + 𝑆𝑇𝑝𝑜
′ ,𝑉2

1) or if no patient has been assigned to 

the relevant OR yet is calculated as  (𝑂𝑇𝑜 + 𝑆𝑄𝑉2
1). 

First, after determining the 𝑜∗ OR to which the 𝑉2
1 

patient will be assigned, the 𝑇𝑉2
1  is calculated. The 

patient's operation completion time is calculated as 

𝑊𝑉2
1 + 𝑡𝑉2

1. If this value coincides with the operation 

times of other ORs, the surgeon(s) in the conflicting 

ORs and the surgeon(s) employed in the operation of 

patient 𝑉2
1 are checked. If the same surgeon(s) is 

employed, the operation start time of the 𝑉2
1 is 

postponed. If different surgeon(s) are employed, the 

patient 𝑉2
1 is assigned a different anesthesia team than 

the patients with the overlap. If there is no free 

anesthesia team, the earliest completed anesthesia team 

is assigned to the patient. These steps are repeated for 

all patients. The decoding algorithm is given below. 

 
Procedure: Decoding algorithm 

Input: A solution (𝑉𝑝
1), problem 

parameters 

Output: Objective function of the 

solution 

𝑂𝑇𝑜 ← 0; 𝑘𝑜 ← 0; 

//The first patient 𝑉1
1 is assigned to 

first OR and first //anesthesia team;  

𝑜∗ ← 1; 𝑇𝑉1
1 ← 𝑆𝑄𝑉1

1;𝐶𝑉1
1 ← 𝑆𝑄𝑉1

1 + 𝑡𝑉1
1; 

𝑔𝑉1
1

∗
←1;𝑃𝐴𝑔

𝑉1
1

∗ ← 𝐶𝑉1
1;𝑂𝑇𝑜∗ ← 𝐶𝑉1

1;𝑝𝑜∗
′ ← 𝑉1

1;𝑘𝑜∗ ←

𝑘𝑜∗ + 1; 𝑠𝑒𝑞𝑘
𝑜∗

← 𝑉1
1; 𝑊𝑉1

1 ← 𝑇𝑉1
1; 

For i=2:n 

 𝑜∗ ← arg min
𝑜

(𝑂𝑇𝑜 + 𝑆𝑇𝑝𝑜
′ ,𝑉𝑖

1); 

𝑇𝑉𝑖
1 ← 𝑂𝑇𝑜∗ + 𝑆𝑇𝑝𝑜∗

′ ,𝑉𝑖
1; 𝑝𝑜∗

′ ← 𝑉𝑖
1; 

𝑠𝑒𝑞𝑘
𝑜∗

← 𝑉𝑖
1; 𝑊𝑉𝑖

1 ← 𝑇𝑉𝑖
1;  

𝑥 ← 𝑇𝑉𝑖
1 + 𝑡𝑉𝑖

1; z←0; 

//The operation starting time 

of patient 𝑉𝑖
1 is determined 

considering //the surgeons;   

While (j<=m) 

 ∆←1; 

 For l=1:𝑘𝑗 

  U←𝑠𝑒𝑞𝑙
𝑗
; 

     If(𝑥 ≤ 𝑊𝑈)or(𝑊𝑉𝑖
1 ≥ 𝐶𝑈) 

   //No overlap 

     Else 

z←z+1; 

Overlap(z)=U;  

     If(𝐻𝑈,𝑑 == 𝐻𝑉𝑖
1,𝑑) 

    𝑊𝑉𝑖
1 ← 𝐶𝑈;  

                                                   𝑥 ← 𝑊𝑉𝑖
1 + 𝑡𝑉𝑖

1;  

        j←1; ∆←0; 

      End 

  End 

  If (∆==0) 

   Break 

  End 

 End 

 If (∆==1) 

  j←j+1; 

 End 

End 

z←0;  

//Assignment of anesthesia team 

and updating of operation 

starting //time considering 

anesthesia teams; 

For j=1:m 

𝑇𝑉𝑙
1 𝐶𝑉𝑙−1

1  𝑊𝑉𝑙−1
1  𝐶𝑉𝑙

1 

𝑊𝑉𝑝
1 𝐶𝑉𝑝

1 

𝑊𝑉𝑙
1 
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 For l=1:𝑘𝑗 

  U←𝑠𝑒𝑞𝑙
𝑗
; 

  If(x≤𝑊𝑈)or(𝑊𝑉𝑖
1 ≥ 𝐶𝑈) 

   //No overlap 

  Else 

z←z+1;  

Overlap(z)=U; 

G\{𝑔𝑈
∗ }; 

  End 

 End 

End 

If (G=={}) 

 𝑔
𝑉𝑖

1
∗ ← arg min

𝑔
𝑃𝐴𝑔∗;  

𝑊𝑉𝑖
1 ← max (𝑃𝐴𝑔

𝑉𝑖
1

∗ , 𝑊𝑉𝑖
1);  

Else 

𝑔
𝑉𝑖

1
∗ ← arg max

𝑔⋲{𝐺}
𝑃𝐴𝑔∗;  

𝑊𝑉𝑖
1 ← max (𝑃𝐴𝑔

𝑉𝑖
1

∗ , 𝑊𝑉𝑖
1); 

End 

𝐶𝑉𝑖
1 ← 𝑊𝑉𝑖

1 + 𝑡𝑉𝑖
1;𝑃𝐴𝑔

𝑉𝑖
1

∗ ← 𝐶𝑉𝑖
1;  

𝑂𝑇𝑜∗ ← 𝐶𝑉𝑖
1; 𝑘𝑜∗ ← 𝑘𝑜∗ + 1; 

End 

4. Computational results 

4.1. Parameters of the heuristic 

Although in most of the studies on heuristic algorithms 

parameter levels are determined without an analytic 

method, in this study Taguchi experimental design 

(TED) method is used to determine the levels of the 

ABC algorithm parameters. The parameters of the ABC 

algorithm are N, T and limit value. Firstly, alternative 

parameter levels are determined through preliminary 

experiments and given in Table 1. L27 orthogonal array 

is chosen due to there are 3 parameters and 3 levels for 

each parameter. In TED method, signal-to-noise ratio 

(S/N) is used as a measure to determine the 

characteristics of engineering problems. To optimize 

the ABC algorithm parameters “the smaller, the better” 

performance criterion is used in TED method due to the 

addressed problem has a minimization objective 

function. The calculation of S/N is given in Equation 

21. In Equation 21, n is the number of observations in 

each experiment and 𝑌𝑖 is the objective function of 

ABC algorithm with the related parameters. The 

optimal parameters are selected considering the highest 

S/N values. Minitab 16 for Windows (Minitab Inc.) is 

used to apply TED method to problem.  

 
𝑆

𝑁
= −10 × log (

1

𝑛
∑ 𝑌𝑖

2𝑛
𝑖=1 )                         (21) 

    

For the test problem with 7 ORs algorithm was run at 

the relevant parameter levels. The main effects plot for 

S/N ratios for the algorithm is given in Figure 5. In 

ABC algorithm, N level sets to 1000, T level is 100 and 

limit is 10.  

 

Table 1. Parameter levels of the ABC algorithm 

Parameters Levels 

N 500/750/1000 

𝑇 50/75/100 

limit 5/7/10 

 

 
Figure 5. S/ N ratios of the algorithm 

 

4.2. Comparisons 

Properties of test problems are given in this section. 

The number of ORs (m) set to 3, 5, 7 or 10. The number 

of patients was taken as 3*m, 5*m, 7*m and 10*m. The 

number of surgeons was taken as 4, 7, 10 and 14, and 

the number of anesthesia team as 2, 3, 5 and 7. The 

parameter 𝑡𝑝 were derived according to a uniform 

distribution in the U(40,170) range. Sequence-

dependent setup times are derived in accordance with 

the uniform distribution in the range of U(20,50), 

U(10,40) or U(30,85). The 𝐻𝑝,𝑑 parameter is derived so 

that 60% of the patients receive service from only one 

surgeon, 25% of the patients receive service from two 

surgeons and 15% from 3 surgeons. For each problem 

type two test problems are derived.  

Test problems are run with the MILP model, ABC 

algorithm and random search. The results of random 

search also is an upper bound for the related test 

problem since for all test problems random search gave 

worse solution than ABC algorithm. In random search, 

random solutions are generated and the objective 

function of these solutions are calculated using the 

proposed decoding algorithm. The random search is run 

the same duration of ABC algorithm for the related test 

problem.    

 The time limit of the MILP model is 3600 seconds. The 

results are given in Table C1-C4 in Appendix section. 

Objective function values, CPU values and Error values 

obtained by using the relevant algorithm are given in 

the tables. Error value is calculated with Equation 22. 

 

𝐸𝑟𝑟𝑜𝑟 =
(𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚−𝑇ℎ𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑇ℎ𝑒 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
     (22) 

 

The results with 3 OR are given in Table C1. Model 

gave optimal solutions for 7 test problems with number 

of 9 or 15 patients. Also, the heuristic algorithm found 
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optimal solutions to these problems. ABC algorithm 

gave better results except six test problems. MILP 

model found no feasible solutions to number of 5 test 

problems with the number of 21 or 30 patients within 

3600 seconds. For other test problems feasible 

solutions were found by MILP model. Accordingly, the 

ABC algorithm gave the better results for all test 

problems. The results with 5 ORs are given in Table 

C2. MILP model found feasible solutions to test 

problems with the number of 15 or 25 patients within 

time limit. MILP model could not find a solution to test 

problems with the number of 35 or 50 patients within 

time limits. Accordingly, the ABC algorithm also 

found better solutions for test problems with 5 ORs. 

The results of 7 ORs are given in Table C3. MILP 

model found feasible solutions to test problems with 

number of 21 patients. No feasible solutions were 

found other test problems by MILP model for the 

number of 7 ORs. The results of 10 ORs are given in 

Table C4. According to Table C4, MILP model found 

feasible solution to only one test problem. The ABC 

algorithm found better solutions than MILP model and 

random search.  

5. Conclusions 

ORs are one of the most important resources of 

hospitals. Therefore, effective scheduling of ORs has 

an important role in the effective management of the 

hospital. ORS problems are multi-resource problems. 

In this study, the ORS problem was defined by 

considering the anesthesia team as well as the surgeons. 

While surgeons are a dedicated resource, the anesthesia 

team is a flexible resource. In the ORS problem, 

sequence dependent setup times are taken into account. 

Although the ORS problem is an important problem, 

there are few studies that take into account the 

sequence-dependent setup times. A MILP model is 

proposed. ABC algorithm has been developed for large 

scale test problems. A heuristic algorithm is proposed 

for the first time to solve the ORS problem with multi-

resource, sequence-dependent setup times. An 

algorithm has been developed to calculate the objective 

functions of the solutions. The proposed ABC 

algorithm is compared with MILP model. As a result, 

the ABC algorithm gave more successful results than 

MILP model. In future studies, the problem can be 

handled with multi- objective functions. Objective 

functions such as tardiness minimization, maximization 

of resource utilization may be considered besides 

makespan minimization. In multi- objective 

optimization problems, pareto optimal solutions are 

found. In multi- objective optimization, all obtained 

solutions are compared with each other to select non- 

dominated solutions in solution space that is increased 

the complexity of the problem. Different methods may 

be used such as Augmented ε- constraint method to 

obtain pareto optimal solutions to multi- objective 

optimization problems. Extracting Pareto optimal 

solutions from the solution space can significantly 

increase the running time of the heuristic algorithm. In 

this study, surgeons and anesthesia teams are 

considered as resources. In future studies, the resource 

conducts the setup and other resources such as 

machines used in operations may be taken into account. 

In this study all patients have same priority. In future 

studies patients may be prioritized. In this study, 

operations and setup times are considered 

deterministic. Stochastic parameters can be taken into 

account. Different heuristic algorithms may be 

proposed to solve the problem or exact solution 

methods may be used to solve the problem. 

 

References 

[1] Lotfi, M., & Behnamian, J. (2022). Collaborative 

scheduling of operating room in hospital network: 

Multi- objective learning variable neighborhood 

search. Applied Soft Computing, 116, 108233. 

[2] Park, J., Kim, B., Eom, M., & Choi, B. K. (2021). 

Operating room scheduling considering surgeons’ 

preferences and cooperative operations. Computers 

and Industrial Engineering, 157, 107306. 

[3] Riet, C. V., & Demeulemeester, E. (2015). Trade- 

offs in operating room planning for electives and 

emergencies: A review. Operations Research for 

Health Care, 7, 52- 69. 

[4]  Cardeon, B., Demeulemeester, E., & Belien, J. 

(2010). Operating room planning and scheduling: A 

literature review. European Journal of Operational 

Research, 2010, 201, 921- 932. 

[5] Rahimi, I., & Gandomi, A. H. (2021). A 

comprehensive review and analysis of operating 

room and surgery scheduling. Archives of 

Computational Methods in Engineering, 28, 1667- 

1688. 

[6] Zhu, S., Fan, W., Yang, S., Pei, J., & Pardolos, P. M. 

(2019). Operating room planning and surgical case 

scheduling: A review of literature. Journal of 

Combinatorial Optimization, 37, 757- 805. 

[7]  Harris, S., & Claudio, D. (2022). Current trends in 

operating room scheduling 2015 to 2020: A 

literature review. Operations Research Forum, 3, 

21- 63. 

[8]  Ferrand, Y. B., Magazine, M. J., & Rao, U. S. 

(2014). Managing operating room efficiency and 

respensiveness for emergency and elective 

surgeries- A literaure survey. IIE Transactions on 

Healthcare Systems Engineering, 4 (1), 49- 64. 

[9] Riise, A., Mannino, C., & Burke, E. K. (2016). 

Modelling and solving generalised operational 

surgery scheduling problems. Computers and 

Operations Research, 66, 1- 11. 

[10]  Augusto, V., Xie, X., & Perdomo, V. (2010). 

Operating theatre scheduling with patient recovery 

in both operating rooms and recovery beds. 

Computers and Industrial Engineering, 2010, 58, 

231- 238. 



202                                  G. Bektur, H.K. Aslan / IJOCTA, Vol.14, No.3, pp.193-207 (2024) 

[11]  Zhang, J., Dridi, M., & Moudni, A. E. (2021). A two- 

phase optimization model combining Markov 

decision process and stochastic programming for 

advance surgery scheduling. Computers and 

Industrial Engineering, 160, 107548. 

[12] Vali- Siar, M. M., Gholami, S., & Ramezanian, R. 

(2018). Multi- period and multi- resource operating 

room scheduling under uncertainty: A case study. 

Computers and Industrial Engineering, 126, 549- 

568. 

[13] Rachuba, S., & Werners, B. (2014). A robust 

approach for scheduling in hospitals using multiple 

objectives. Journal of Operational Research Society, 

65, 546- 556. 

[14]  Cardoen, B., Demeulemeester, E., & Belien, J. 

(2009). Optimizing a multiple objective surgical 

case sequencing problem. International Journal of 

Production Economics, 119, 354- 366. 

[15] Cappanera, P., Visintin, F., & Banditori, C. (2014). 

Comparing resource balancing criteria in master 

surgical scheduling: A combined optimisation- 

simulation approach. International Journal of 

Production Economics, 2014, 158, 179- 196. 

[16] Azar, M., Carrasco, R. A., & Mondschein, S. (2022). 

Dealing with uncertain surgery times in operating 

room scheduling. European Journal of Operational 

Research, 2022, 299, 377- 394. 

[17] Landa, P., Aringhieri, R., Soriano, P., Tanfani, E., & 

Testi, A. (2016). A hybrid optimization algorithm 

for surgeries scheduling. Operations Research for 

Health Care, 8, 103- 114. 

[18] Mazloumian, M., Baki, M. F., & Ahmadi, M. (2022). 

A robust multiobjective integrated master surgery 

Schedule and surgical case assignment model at a 

publicly funded hospital. Computers and Industrial 

Engineering, 163, 107826. 

[19]  Agnetis, A., Coppi, A., Corsini, M., Dellino, G., 

Meloni, C., & Pranzo, M. (2014). A decomposition 

approach for the combined master surgical schedule 

and surgical case assignment problems. Health Care 

Management Science, 2014, 17, 49- 59. 

[20] Roshanaei, V., Luong, C., Aleman, D. M., & 

Urbach, D. R. (2020). Reformulation, linearization, 

and decomposition techniques for balanced 

distributed operating room scheduling. Omega, 93, 

102043. 

[21] Roshanaei, V., & Naderi, B. (2021). Solving 

integrated operating room planning and scheduling: 

Logic- based Benders decomposition versus Branch- 

price and cut. European Journal of Operational 

Research, 293, 65- 78. 

[22]  Range, T. M., Lusby, R. M., & Larsen, J. (2014). A 

column generation approach for solving the patient 

admission scheduling problem. European Journal of 

Operational Research, 235, 252- 264. 

[23] Agnetis, A., Coppi, A., Corsini, M., Dellino, G., 

Meloni, C., & Pranzo, M. (2012). Long term 

evaluation of operating theater planning policies. 

Operations Research for Health Care, 2012, 1, 95- 

104. 

[24] Hamid, M., Nasiri, M. M., Werner, F., 

Sheikhahmadi, F., & Zhalechian, M. (2019a) 

Operating room scheduling by considering the 

decision- making styles of surgical team members: 

A comprehensive approach. Computers and 

Operations Research, 108, 166- 181. 

[25] Fei, H., Chu, C., & Meskens, N. (2009). Solving a 

tactical operating room planning problem by a 

column- generation- based heuristic procedure with 

four criteria. Annals of Operations Research, 166, 

91- 108. 

[26]  Fei, H., Meskens, N., & Chu, C. (2010). A planning 

and scheduling problem for an operating theatre 

using on open scheduling strategy. Computers and 

Industrial Engineering, 58, 221- 230. 

[27] Vijayakumar, B., Parikh, P. J., Scott, R., Barnes, A., 

& Gallimore, J. (2013). A dual bin packing approach 

to scheduling surgical cases at a publicly- funded 

hospital. European Journal of Operational 

Research, 224, 583- 591. 

[28] Fügener, A., Hans, E. W., Kolisch, R., Kortbeek, N., 

& Vanberkel, P. T. (2014). Master surgery 

scheduling with consideration of multiple 

downstream units. European Journal of Operational 

Research, 239, 227- 236. 

[29] Aringhieri, R., Landa, P., Soriano, P., Tanfani, E., & 

Testi, A. (2015). A two level metaheuristic for the 

operating room scheduling and assignment problem. 

Computers and Operations Research, 2015, 54, 21- 

34. 

[30] Jebali, A., & Diabat, A. (2015). A stochastic model 

for operating room planning under capacity 

constraints. Journal of Production Research, 53, 24, 

7252- 7270. 

[31] Pariente, J. M., Hans, E. W., Framinan, J. M., & 

Gomez- Cia, T. (2015). New heurisitcs for planning 

operating rooms. Computers and Industrial 

Engineering, 90, 429- 443.  

[32]  Wang T., Meskens, N., & Duvivier, D. (2015). 

Scheduling operating theatres: Mixed integer 

programming vs. constraint programming. 

European Journal of Operational Research, 247, 

401- 413. 

[33] Heydari, M., & Soudi, A. (2016). Predictive/ 

Reactive planning and scheduling of a surgical süite 

with emergency patient arrival. Journal of Medical 

Systems, 40, 30. 

[34] Addis, B., Carello, G., Grosso, A., & Tanfani, E. 

(2016). Operating room scheduling and 

rescheduling: A Rolling horizon approach. Flexible 

Services and Manufacturing Journal, 2016, 28, 206- 

232. 

[35]  Ahmed, A., & Ali, H. (2020). Modeling patient 

preference in an operating room scheduling problem. 



Artificial bee colony algorithm for operating room scheduling problem with dedicated/flexible resources…  203 

Operations Research for Health Care, 2020, 25, 

100257. 

[36] Coban, E. (2020). The effect of multiple operating 

room scheduling on the sterilization schedule of 

reusable medical devices. Computers and Industrial 

Engineering, 147, 106618. 

[37] Khaniyev, T., Kayış, E., & Güllü, R. (2020). Next- 

day operating room scheduling with uncertain 

surgery durations: Exact analysis and heurisitcs. 

European Journal of Operational Research, 286, 

49- 62. 

[38] Britt, J., Baki, M. F., Azab, A., Chaouch, A., & Li, 

X. (2021). A stochastic hierarchical approach for the 

master surgical scheduling problem. Computers and 

Industrial Engineering, 2021, 158, 107385. 

[39] Rachuba, S., Imhoff, L., & Werners, B. (2022). 

Tactical blueprints for surgical weeks- An integrated 

approach for operating rooms and intensive care 

units. European Journal of Operational Research, 

298, 243- 260. 

[40]  Azaiez, M., Gharbi, A., Kacem, I., Makhlouf, Y., & 

Masmoudi, M. (2022). Two- stage no- wait hybrid 

flow shop with inter- stage flexibility for operating 

room scheduling. Computers and Industrial 

Engineering, 2022, 168, 108040. 

[41] Makboul, S., Kharraja, S., Abbassi, A., & Alaoui, A. 

(2022). A two- stage robust optimization approach 

for the master surgical schedule problem under 

uncertainty considering downstream resources. 

Health Care Management Science, 25, 63- 88. 

[42]  Oliveira, M., Visintin, F., Santos, D., & Marques, I. 

(2023). Flexible master surgery scheduling: 

Combining optimization and simulation in a Rolling 

horizon approach. Flexible Services and 

Manufacturing Journal. 

[43] Hamid, M., Hamid, M., Musavi, M., & Azadeh, A. 

(2019b) Scheduling elective patients based on 

sequence- dependent setup times in an open- heart 

surgical department using an optimization and 

simulation approach. Simulation: Transactions of 

the Society for Modelling and Simulation 

International, 95 (12), 1141- 1164. 

[44] Ciavotta, M., Dellino, G., Meloni, C., & Pranzo, M. 

(2010). A rollout algorithmic approach for complex 

parallel machine scheduling in healthcare 

operations. Operations Research for Patient: 

Centered health care delivery: Proceeding of the 

XXXVI International ORAHS Conference. 

[45] Arnaout, J. M., & Kulbashian, S. (2008). 

Maximizing the utilization of operating rooms with 

stochastic times using simulation. Proceedings of the 

2008 Winter Simulation Conference. 

[46] Arnaout, J. (2010). Heuristics for the maximization 

of operating rooms utilization using simulation. 

Simulation, 2010, 86, 8-9, 573- 583. 

[47]  Zhao, Z., & Li, X. (2014). Scheduling elective 

surgeries with sequence- dependent setup times to 

multiple operating rooms using constraint 

programming. Operations Research for Health 

Care, 3, 160- 167. 

[48] Karakas, E., & Ozpalamutcu, H. (2019). A genetic 

algorithm for fuzzy order acceptance and scheduling 

problem. An International Journal of Optimization 

and Control: Theories & Applications, 9 (2), 186-

196.  

[49] Karaboğa, D. (2005). An idea based on honey bee 

swarm for numarical optimization: Technical report. 

Erciyes University. 

[50]  Lei, D., & He, S. (2022). An adaptive artificial bee 

colony for unrelated parallel machine scheduling 

with additional resource and maintenance. Expert 

Systems with Applications, 205, 117577. 

[51]  Xu, Y., & Wang, X. (2021). An artificial bee colony 

algorithm for scheduling call centres with weekend- 

off fairness. Applied Soft Computing, 109, 107542. 

 

Gulcin Bektur received her PhD degree from Eskisehir 

Osmangazi University, department of Industrial 

Engineering. She is an Assistant Professor at Iskenderun 

Technical University, department of Industrial 

Engineering. Her research areas are scheduling, vehicle 

routing, mathematical modelling and heuristic search. 

 http://orcid.org/0000-0003-4313-7093  

 

Hatice Kübra Aslan received her Bachelor degree from 

Iskenderun Technical University, department of Industrial 

Engineering. She works as an industrial engineer in a 

production company. Her research areas are workforce 

scheduling and mathematical modelling.  

 http://orcid.org/0000-0001-5020-3920 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



204                                  G. Bektur, H.K. Aslan / IJOCTA, Vol.14, No.3, pp.193-207 (2024) 

Appendix 

A. Related studies 
Table A1. Related studies 

Article 

Add.  

Res. R
es

. 
T

y
p

e 

P
a

ti
en

ts
 

Obj. Funct. Method 

Add 

Pro. 

Zhang, 2021 d a a Minimizing total cost Column Gen. Based  

Heuristic, stoch. Prog. 

a,b 

Rachuba, 2022 d b a Maximizing total  

number of patients 

Chance const. Opt.,  

Simulation 

a,b 

Park, 2021 a a a Minimizing number of ORs and 

overtime 

Mathematical model c,e 

Mazloumian, 2022 d a a Minimizing total waiting 

Minimizing postponed 

Minimizing loss incurred 

Robust MOILP Model a,b 

Lotfi, 2022 a b c Minimizing total comp. time 

Minimizing makespan 

Multi- obj. variable neigh.  

Search 

b 

Khaniyev, 2020  -  - a Minimizing waiting, idle and  

overtime 

Heuristic algorithms a 

Hamid, 2019 a a,d,e a a Minimizing total cost 

Maximizing service level 

Maximizing consistecy score 

NSGA II f 

Britt, 2021 a,d,e b a Minimizing total cost 

Minimizing number of ORs 

Hybrid heuristic alg. a,b,c 

Azaiez, 2022 d b a Minimizing max. compl. time MILP, Heuristics b 

Aringhieri, 2015 a,d a a Minimizing total cost of  

waiting time 

Two level heuristic,  

ILP model 

 

Addis, 2016  -  - a Minimizing total  

waiting time and tardiness 

Robust optimization a,b 

Roshanaei, 2021 a a a Maximizing total scheduled 

surgical times 

Benders decomposition,  

MILP 

 

Wang, 2015 a,b,c,

d 

b a Minimizing makespan MILP, Constraint prog. f 

Makboul, 2022 a,d c a Maximizing score of surgeries Robust opt. a,b,f 

Fei, 2010 a a a Minimizing cost Hybrid GA b 

Coban, 2020 e a a Minimizing total cost Heuristic, MILP model 
 

Pariente, 2015 a b a Maximizing service level Heuristics f 

Oliveira, 2022 a,c c a Minimizing deviations ILP model, simulation b 

Ahmed, 2020 a b a Max. Patient preference 

Minimizing total cost 

Fuzzy TOPSIS, MILP  

model 

f 

Agnetis, 2014 a b a Maximizing total score Decomposition b 

Jebali, 2015 d b a Minimizing costs Stoch. Prog. a,b 

Vijayakumar, 2013 a,b,e a a Maximizing number of patients Heuristic b,f 

Heydari, 2016 d b c Minimizing makespan and 

overtime 

Stochastic prog. a,b 

This study a,c c a Minimizing max. compl. time Heuristic,MILP d,e 

Add. Resources: a: Surgeon, b: Nurse, c: Anesthesiologist, d: Downstream beds, e: Equipment/Tools 

Additional Resource Type: a: Dedicated, b: Flexible, c: Hybrid 

Patients: a: Elective, b: Emergency, c: Hybrid 

Add. properties: a: Uncertainty on parameters, b: Multi- period, c: Preferences, d: Setup times,  

e: Cooperative operations, f: Priorities of patients 

 
B. Parameters of example problem 

The proposed MILP model was coded in the GAMS 24.0.2 program. Solved with CPLEX solver. For the first test 

problem, the MILP model was run. In Table A1 parameters of the problem are given. There are 9 patients, 3 ORs, 

4 surgeons and 2 anesthesia teams.  
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Table B1. Parameters of 𝑆𝑄𝑝, 𝑆𝑇𝑝,𝑙 𝐻𝑝,𝑑 and 𝑡𝑝  

 p tp  SQp  
STp,l  Hp,d  

1 2 3 4 5 6 7 8 9 1 2 3 4 

1 158 21 29 32 34 12 39 25 33 32 35 0 1 0 0 

2 119 26 15 24 29 38 35 37 27 27 36 0 1 0 0 

3 157 20 11 37 22 11 32 15 14 28 18 0 1 1 1 

4 65 29 20 22 22 22 28 15 16 13 20 0 0 0 1 

5 138 34 33 17 32 31 35 35 19 19 26 0 1 1 1 

6 85 32 20 35 34 27 18 30 17 24 22 0 1 0 0 

7 94 14 26 40 33 39 17 26 12 33 28 1 0 1 0 

8 60 35 36 40 38 22 10 26 16 17 20 1 0 0 0 

9 146 11 13 32 32 26 20 35 27 39 37 0 1 0 0 

 
 

C. Solutions of test problems 

Table C1. Solution of test problems with 3 ORs 

n ST 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

9 U(10,40) 814* 1882 0 814 6.59 0 814 0 

9 U(10,40) 630* 2804 0 630 5.61 0 632 0.003 

9 U(20,50) 759* 1620 0 759 4.91 0 759 0 

9 U(20,50) 742* 1874 0 742 4.64 0 758 0.022 

9 U(30,85) 530 3600 0.017 521 6.13 0 521 0 

9 U(30,85) 514 3600 0.024 502 5.45 0 502 0 

15 U(10,40) 980* 1235 0 980 9.39 0 995 0.015 

15 U(10,40) 1065* 2152 0 1065 7.78 0 1087 0.021 

15 U(20,50) 1061 3600 0.002 1059 7.96 0 1059 0 

15 U(20,50) 878* 2252 0 878 9.28 0 878 0 

15 U(30,85) 998 3600 0.034 965 7.74 0 989 0.025 

15 U(30,85) 983 3600 0.005 978 7.59 0 1001 0.023 

21 U(10,40) 1482 3600 0.086 1365 11.86 0 1385 0.015 

21 U(10,40) 1281 3600 0.063 1205 14.79 0 1227 0.018 

21 U(20,50) 1434 3600 0.075 1334 12.49 0 1337 0.002 

21 U(20,50)  - 3600  - 1166 12.57 0 1200 0.029 

21 U(30,85) 1698 3600 0.103 1540 12.71 0 1621 0.052 

21 U(30,85)  - 3600  - 1338 13.65 0 1452 0.085 

30 U(10,40) 1908 3600 0.181 1616 23.86 0 1663 0.029 

30 U(10,40)  - 3600  - 1500 20.52 0 1559 0.039 

30 U(20,50) 2277 3600 0.368 1665 16.98 0 1738 0.044 

30 U(20,50)  - 3600  - 1644 17.58 0 1658 0.009 

30 U(30,85) 2172 3600 0.225 1773 22.45 0 1868 0.054 

30 U(30,85)  - 3600  - 1916 16 0 1927 0.006 

* optimal 

solution 
Average 0.062 

  
0 

 
0.02 
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Table C2. Solution of test problems with 5 ORs 

n ST(p,l) 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

15 U(10,40) 680 3600 0.012 672 10.75 0 684 0.018 

15 U(10,40) 579 3600 0.032 561 12.44 0 564 0.005 

15 U(20,50) 580 3600 0.133 512 10.04 0 513 0.002 

15 U(20,50) 566 3600 0 566 11.8 0 577 0.019 

15 U(30,85) 793 3600 0.025 774 12.89 0 798 0.031 

15 U(30,85) 731 3600 0.046 699 10.53 0 778 0.11 

25 U(10,40) 1276 3600 0.44 886 23.33 0 920 0.038 

25 U(10,40)  - 3600  - 915 17.49 0 923 0.009 

25 U(20,50) 1359 3600 0.162 1170 24.35 0 1189 0.016 

25 U(20,50) 1391 3600 0.218 1142 19.97 0 1184 0.037 

25 U(30,85) 1930 3600 0.885 1024 21.69 0 1198 0.169 

25 U(30,85)  - 3600  - 1012 23.56 0 1032 0.02 

35 U(10,40)  - 3600  - 1191 23.3 0 1230 0.033 

35 U(10,40)  - 3600  - 1317 33.58 0 1378 0.046 

35 U(20,50)  - 3600  - 1514 27.9 0 1698 0.121 

35 U(20,50)  - 3600  - 1494 29.1 0 1495 0.001 

35 U(30,85)  - 3600  - 1277 31.86 0 1319 0.033 

35 U(30,85)  - 3600  - 1293 30.96 0 1387 0.073 

50 U(10,40)  - 3600  - 2022 40.71 0 2023 0 

50 U(10,40)  - 3600  - 1892 35.37 0 2077 0.098 

50 U(20,50)  - 3600  - 2180 41.71 0 2223 0.02 

50 U(20,50)  - 3600  - 1967 39.75 0 2094 0.065 

50 U(30,85)  - 3600  - 1872 38.53 0 1999 0.068 

50 U(30,85)  - 3600  - 1960 41.46 0 2111 0.077 

  Average 0.19   0  0.046 

 
 

Table C3. Solution of test problems with 7 ORs  

n ST(p,l) 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

21 U(10,40) 542 3600 0.146 473 17.27 0 497 0.051 

21 U(10,40) 641 3600 0.009 635 14.56 0 645 0.016 

21 U(20,50) 747 3600 0.201 622 16.83 0 629 0.011 

21 U(20,50) 929 3600 0.078 862 16.33 0 927 0.075 

21 U(30,85) 801 3600 0.004 798 19.92 0 801 0.004 

21 U(30,85) 712 3600 0.029 692 14.11 0 785 0.134 

35 U(10,40)  - 3600  - 876 31.26 0 985 0.124 

35 U(10,40)  - 3600  - 1022 36.01 0 1108 0.084 

35 U(20,50)  - 3600  - 1163 32.53 0 1189 0.022 

35 U(20,50)  - 3600  - 1064 26.07 0 1089 0.023 

35 U(30,85)  - 3600  - 1193 32.8 0 1198 0.004 

35 U(30,85)  - 3600  - 927 28.63 0 1010 0.09 

49 U(10,40)  - 3600  - 1198 46.04 0 1267 0.058 

49 U(10,40)  - 3600  - 1275 41.35 0 1355 0.063 

49 U(20,50)  - 3600  - 1198 38.9 0 1299 0.084 

49 U(20,50)  - 3600  - 1340 42.65 0 1374 0.025 
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49 U(30,85)  - 3600  - 1540 39.15 0 1643 0.067 

49 U(30,85)  - 3600  - 1602 40.86 0 1620 0.011 

70 U(10,40)  - 3600  - 1998 65.94 0 2104 0.053 

70 U(10,40)  - 3600  - 1619 68.37 0 1779 0.099 

70 U(20,50)  - 3600  - 1868 66.32 0 1963 0.051 

70 U(20,50)  - 3600  - 1765 63.92 0 1910 0.082 

70 U(30,85)  - 3600  - 1766 68.58 0 1856 0.051 

70 U(30,85)  - 3600  - 1925 65.78 0 2034 0.057 

  Average 0.077   0  0.055 

 
 

Table C4. Solution of test problems with 10 ORs  

n ST(p,l) 
MILP Model ABC Random Search 

Z CPU Error Z CPU Error Z Error 

30 U(10,40) 1101 3600 0.59 691 28.35 0 741 0.072 

30 U(10,40)  - 3600  - 780 29.31 0 803 0.029 

30 U(20,50)  - 3600  - 735 24.28 0 743 0.011 

30 U(20,50)  - 3600  - 733 25.44 0 764 0.042 

30 U(30,85)  - 3600  - 639 25.09 0 658 0.03 

30 U(30,85)  - 3600  - 826 24.54 0 995 0.205 

50 U(10,40)  - 3600  - 1154 50.48 0 1163 0.008 

50 U(10,40)  - 3600  - 985 46.8 0 1051 0.067 

50 U(20,50)  - 3600  - 943 51.19 0 1012 0.073 

50 U(20,50)  - 3600  - 1082 53.68 0 1083 0.001 

50 U(30,85)  - 3600  - 1075 51.1 0 1159 0.078 

50 U(30,85)  - 3600  - 1119 46.44 0 1252 0.119 

70 U(10,40)  - 3600  - 1686 75.05 0 1721 0.021 

70 U(10,40)  - 3600  - 1623 75.81 0 1641 0.011 

70 U(20,50)  - 3600  - 1706 73.99 0 1714 0.005 

70 U(20,50)  - 3600  - 1262 80.06 0 1405 0.113 

70 U(30,85)  - 3600  - 1469 81.6 0 1614 0.099 

70 U(30,85)  - 3600  - 1563 73.56 0 1593 0.019 

100 U(10,40)  - 3600  - 2332 112.7 0 2383 0.022 

100 U(10,40)  - 3600  - 2373 106.3 0 2393 0.008 

100 U(20,50)  - 3600  - 2086 135.8 0 2254 0.081 

100 U(20,50)  - 3600  - 1927 137.1 0 2121 0.101 

100 U(30,85)  - 3600  - 2034 146.9 0 2287 0.124 

100 U(30,85)  - 3600  - 2300 155.2 0 2406 0.046 

  Average 0.59   0  0.057 

 

 
An International Journal of Optimization and Control: Theories & Applications (http://ijocta.balikesir.edu.tr) 

 

 
 

This work is licensed under a Creative Commons Attribution 4.0 International License. The authors retain ownership of the 

copyright for their article, but they allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in IJOCTA, 

so long as the original authors and source are credited. To see the complete license contents, please visit 

http://creativecommons.org/licenses/by/4.0/. 

http://creativecommons.org/licenses/by/4.0/

