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Abstract: In this study, firstly, a practical and educational
geostatistical program (JeoStat) was developed, and then
example analysis of porosity parameter distribution, using
oilfield data, was presented.
With this program, two or three-dimensional variogram
analysis can be performed by using normal, log-normal
or indicator transformed data. In these analyses, JeoStat
offers seven commonly used theoretical variogram mod-
els (Spherical, Gaussian, Exponential, Linear, Generalized
Linear,HoleEffect andPaddingtonMix) to theusers. These
theoretical models can be easily and quickly fitted to ex-
perimental models using a mouse. JeoStat uses ordinary
kriging interpolation technique for computation of point
or block estimate, and also uses cross-validation test tech-
niques for validation of the fitted theoreticalmodel. All the
results obtained by the analysis as well as all the graph-
ics such as histogram, variogram and kriging estimation
maps can be saved to the hard drive, including digitised
graphics and maps. As such, the numerical values of any
point in the map can bemonitored using amouse and text
boxes. This program is available to students, researchers,
consultants and corporations of any size free of charge.
The JeoStat software package and source codes available
at: http://www.jeostat.com/JeoStat_2017.0.rar

Keywords:Variogram,Kriging, Geostatistics, Spatial Anal-
yses, Visual Basic, Reservoir

1 Introduction
Geostatistics include a number of methods and tech-
niques to analyze the variability of spatially distributed
or spatially structured regionalized variables [1]. The tech-
niques, developed by Krige [2] and Matheron [3] to evalu-
ate orebody, have been disseminated out into many other
fields, utilising spatial data. Its diverse disciplines include
petroleum geology [4], hydrogeology [5], hydrology [6],
meteorology [7], oceanography [8], geochemistry [9], met-
allurgy [10], geography [11, 12], forestry [13], environmen-
tal control [14], landscape ecology [15], soil science and
agriculture [16, 17]. In petroleum industries, geostatistics
is successfully applied to characterize petroleum reser-
voirs based on interpretations from sparse data located
in space, such as reservoir thickness, porosity, permeabil-
ity and seismic data [18–20]. The basic steps of a geosta-
tistical analysis consist of creating an experimental semi-
variogram, fitting a model to the experimental semivari-
ogram and using the information from this to carry out
the kriging. Analyzing the spatial continuity or rough-
ness of a geospatial data in different directions and toler-
ances, called semivariogram analysis, is time-consuming.
Furthermore, performing the cross-validation to the semi-
variogram model and inputting test parameters of every
model in various directions and tolerance angles requires
a computer program, since it is almost impossible to man-
ually perform these analyseswhich require a large number
of numerical calculations. Many computer programs have
been developed including Geo-EAS [21], GSLIB [22], Vari-
owin [23], GSTAT [24], S-GeMS [25], etc . When the most
of the commercially available programs assessed, it was
notified that some of those programs are not providing
an opportunity to fit some of the model semivariograms
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Figure 1: Geostatistical analysis stages: a) post plot of sample data, b) tolerance angles and distance tolerances, c) experimental semivari-
ogram, d) theoretical semivariogram, e) contouring of kriged values, f) kriging error map

and/or to present outputs of some stages of the analysis
and also especially semivariogram analysis for different
directions or anisotropymight take a lot of time. Some soft-
ware which is public domain such as Geo-EAS [21], runs
underMS-DOS platform. Those ones are not up-to-date for
running on Windows platforms. Although they are useful
in research and education, their potential application is
limited as they are not suitable forWindows. Besides,most
programs (e. g., Geo-EAS [21], GSLIB [22], Variowin [23])
do not allow to analyze 3D data and contain the very lim-
ited number of theoretical semivariogram models. In this
context, Geo-EAS [21] contains only four different theoret-
ical semivariogram models. Furthermore, indicator- and
log-kriging is occasionally needed in the spatial data anal-
ysis; most of the freely available programs have no tools
to do such analysis. More importantly, just a few of pro-
grams allow the user to estimate values for a convex or
concave polygon area, although required in reserve esti-
mation in the mining sector. All those shortcomings con-
strain analysis of spatial dependence structure of data and
may present challenges in teaching as well. In this con-
text, a program is necessary to provide useful outputs to

the practitioners as well as instructors who are engaged in
the numerical calculations.

The objectives of this study were twofold: a) To de-
velop a user-friendly public domain software for perform-
ing geostatistical analysis in geosciences, b) To apply the
software to an oil field discipline for modelling porosity
and its spatial distribution.

2 Basics of Geostatistical
Estimations

In any geostatistical analysis, there are twomajor steps: a)
Semivariogram analysis, b) Kriging estimation and map-
ping. More generally, that can be divided into four steps to
complete fully geostatistical analysis and mapping of re-
gionalized variables [26–28]:
i. Determining an appropriate theoretical semivariogram
models, used to fit experimental semivariogram and pos-
sible anisotropy, ii. Performing validation methods to the
semivariogram model,
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iii. Generating kriging estimates and errors of estimates,
i.e. kriging errors, for a point, zone or volume by kriging
interpolation techniques,
iv. Mapping the spatial distributions of the kriging esti-
mates and kriging errors (Fig. 1).

In a geostatistical analysis, all these componentsmust
be systematically accounted for [29–31].

2.1 Semivariogram Analyses

The semivariogram is a plot of semivariances as a function
of distances between the observations, and is denoted by
𝛾(h) [32–34]. In order to plot experimental semivariogram,
firstly, N(N-1)/2 pairs of combinations are formed from the
N observations [22, 26], and Euclidean distances (h) and
direction angle (α) between pairs are calculated by the fol-
lowing equations [27].

h =
⃒⃒
ui − u j

⃒⃒
=
√︁
(xi − xj)

2
+ (yi − yj)

2 + (zi − zj)
2 ;

ui = (xi , yi , zi), uj = (xj , yj , zj) (1)

α = arctangent
(︂ yi − yj
xi − xj

)︂
(2)

where uiand uj are observation locations; xi, yi, zi are east-
ing, northing and elevation, respectively.

Secondly, observation pairs are classified in different
direction angles, distance conditions and the semivari-
ance between them is calculated with the help of Eq. (3).
Finally, the semivariance values calculated for each dis-
tance (h) are plotted and an experimental semivariogram
is obtained [35] as shown in Fig. 2a.

𝛾*(h) = 1
2N(h)

N(h)∑︁
i=1

[︀
z(xi) − z(xi + h)

]︀2 (3)

where z is an observed value at a particular location, h is
the distance betweenordereddata, andN(h) is the number
of paired data at a distance of h [31].

Before using experimental semivariogram in the krig-
ing estimation process, the most appropriate theoreti-
cal model representing the experimental semivariogram
needs to be determined. Commonly used theoretical mod-
els are presented in Fig. 2(b-h) [21, 26]. C0; C1 and C are
the nugget (unaccountable) and stochastic (accountable)
variance; sill value [17], respectively; and a is the range of
influence [23].

In JeoStat, data is assumed to be stationary, i.e. there
is no trend in the data. If that data is not stationary, trend
needs to be removed using following trend surface analy-
sis [36]. Subsequently, detrended data can be easily anal-
ysed by JeoStat program.

2.2 Cross-Validation

One of the commonly used methods to verify the validity
of the selected semivariogram models and their param-
eters is ‘jack-knifing’ cross-validation [37, 38]. The tech-
nique compares estimated and observed values at the ge-
ographical locations. The sample value at a particular lo-
cation is discarded intentionally from the sample data set,
and the value at the same location is estimated using the
remaining dataset, adopted semivariogram and estimated
parameters [39]. The process, therefore, provides an ob-
served and estimated value for each data location (i). The
estimated value can then be compared to the observed
value. To this end, reduced variable (RE), mean reduced
error (MRE) and reduced variance (RVAR) are calculated
using the equations [17, 40]

REi =
[︁
Z*i −Zi
σOKi

]︁
MRE = 1

N

N∑︀
i=1
REi

RVAR = 1
N−1

N∑︀
1
(REi −MRE)2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4)

where Z* i, Zi,σOKi are estimated and observed values, krig-
ing standard deviation or kriging error, respectively. Jeo-
Stat program employs ‘jack-knifing’ cross-validation tech-
nique for validating postulated theoretical semivariogram
and adopted parameters.

2.3 Ordinary Kriging Interpolation

The adopted theoretical semivariogramand its parameters
can be used interactively in the Jeostat program to esti-
mate unknown values at unsampled locations as well as
to quantify various features of the regionalized variable.
Kriging, which serves this purpose, is used as a best lin-
ear unbiased estimator (BLUE) [14, 41, 42]. Simple, ordi-
nary andblock interpolation are themost common estima-
tion techniques. However as the true value of the popula-
tion is usually unknown ordinary and block kriging tech-
niques [17, 35, 36] are adopted in this study to ensure an
unbiased estimated value. If the kriging estimator is used
to estimate a value at a particular location uo or an average
value in an area (block) or volume (V) centred at uo, the es-
timate (Z*V ) for a continuous variable [4] can be given in a
general form:

Z*V = 1
V

∫︁
V

Z(u)dx (5)

Since this estimate of Z*(uo) gives the value at a loca-
tion of uo for the numerical function ofZ(u), the estimation
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Figure 2: Example of experimental and theoretical semivariogram model; commonly used theoretical semivariogram models: (b) Exponen-
tial, (c) Spherical, (d) Generalized linear, (e) Gaussian model, (f) Hole effect, (g) Linear (h) Paddington mix.

given in Eq. (5) can be expressed in a discrete form as the
linear sum of the observed values with the Eq. (6) [43].

Z*V (u0) =
n∑︁
i=1

λiZ(ui) (6)

where Zv*, Z(ui), λi are estimated value at uo, a value of
the observations to be used in the estimation of point uo,

sample weighting factor. In order to get an unbiased es-
timate with the minimum variance [44], Lagrangian Mul-
tiplier method [45] is applied and kriging equation set is
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obtained as in Eq. (6).
n∑︀
j=1
λj𝛾

(︀
ui , uj

)︀
+ µ = 𝛾(ui , u0)i = 1, 2, 3, ..., n

n∑︀
i=1
λi = 1

⎫⎪⎪⎬⎪⎪⎭ (7)

σ2OK =
n∑︁
i=1

λi𝛾(ui , u0) − 𝛾(u0, u0) + µ (8)

where 𝛾
(︀
ui , uj

)︀
, 𝛾(ui , u0), stand for semivariance between

ui and uj observation locations, observation location ui
and the location to be estimated (uo); µ Lagrangian Multi-
plier. Following [46], the kriging system of Eq. (7) will take
the following matrix form:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾1,1 𝛾1,2 𝛾1,3 · · · · · ·
𝛾2,1 𝛾2,2 𝛾2,3 · · · · · ·
𝛾3,1 𝛾3,2 𝛾3,3 · · · · · ·
...

...
...

...

· · · · · · · · · · · · 𝛾1,n 1
· · · · · · · · · · · · 𝛾2,n 1
· · · · · · · · · · · · 𝛾3,n 1

...
...

... 1
...

...
...

...
...

...
...

...
𝛾n,1 𝛾n,2 𝛾n,3 · · · · · ·
1 1 1 1

...
...

... 1
...

...
... 1

· · · · · · · · · · · · 𝛾n,n 1
1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
λ2
λ3
...
...
...
λn
µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾 (u1 , u0)
𝛾 (u2 , u0)
𝛾 (u3 , u0)

...

...

...
𝛾 (un , u0)

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

The weights λi can be obtained by taking the inverse
of the matrix A and multiplying it by the C vector (Eq. 10).
λi and µ are found by matrix multiplication as shown in
Eq. (11).

B = A−1xC (10)
The variance of the estimate can be calculated by employ-
ing Eq. (11).

σ2
OK

= BTC − 𝛾(u0, u0) (11)
where BT stands for transpose of vector B. Equations from
6 to 11 areused for point kriging estimation. If blockkriging
is applied, semivariance terms of 𝛾(ui , u0) and 𝛾(u0, u0)
should be substituted for 𝛾(ui , V) and 𝛾(V , V), respec-
tively, in order to ensure areal or volume estimates.

3 Details of JeoStat
Semivariogram analysis techniques and kriging estima-
tion equations are implemented in the JeoStat software us-

Figure 3: General flowchart for JeoStat

Figure 4: Data file in ASCII format

ing Visual Basic language. JeoStat main application form
includes six tab screens. These tabs are, in order;
– Importing data,
– Statistical analysis,
– Semivariogram modeling,
– Cross-validation test,
– Kriging estimates and variances,
– Visualization of the outputs.

JeoStat’s general flowchart is shown in Fig. 3, and analysis
details are described in the following sections.

3.1 Preparing and Importing Data

The JeoStat file format is aimed to be as simple as possible.
The data file is an ASCI file with headers lines followed by
the data, which is tab or comma delimited. As shown in
Fig. 4, the first header line is a title. The second line should
be a numerical value specifying the number of numerical
variables in the data file. The next lines contain charac-
ter identification labels. The following lines are considered
as data points and must have numerical values per line.
Declaring variable sized array in JeoStat is programmed by
using a method called “Dynamic Array Allocation”, which
allows the program to analyze any size data set, up to limit
of a user’s machine memory.
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Figure 5: A captured view of the JeoStat’ data importing window

Once the data file has been prepared, it can be loaded
by clicking the “Input File” button. On the second stage,
a user should select and define variables required for the
statistical analysis which are UTM coordinate columns (X
(easting), Y (northing) and elevation), variable label and
dimension of analysis, as well as transformation options
from the combo box components. Once the variables have
been declared, preliminary information such as a number
of pairs, maximum and minimum values on tab screen is
obtained by clicking “Read Data”. If the user will perform
an analysis based on an indicator or logarithmic transfor-
mation [26, 30, 41], the values of cut-off or log option must
be entered in required text boxes (Fig. 5). When the user
selects “Three Dimensional” option from Combo Box, pa-
rameters regarding three-dimensional analyses will be ac-
tivated automatically on the other tabs’ screen. Addition-
ally, there is a text box under the file menu of the screen
where the user can enter the path and name of the output
file, which will be saved to the hard drive with various file
extensions such as “stat” for statistical analysis results,
“var” for semivariogram analysis results, 11res” for cross
validation results and “grd” for kriging results file.

3.2 Statistical Analysis

Descriptive statistics are used to describe the basic fea-
tures of the data in a geostatistical study. To this end, Jeo-
Stat offers various descriptive statistics [47] such as vari-
ance, standard deviation, median, mean, skewness, kurto-
sis, coefficient of variation, minimum andmaximum values
(Fig. 6). Additionally, histogram and post plots of the spa-
tial data can be displayed easily on the screen (Fig. 7). Vi-

sual Basic Picture Box objects displaying graphics were
digitized during the program development process so the
user easily observe the abscissa and ordinate values of the
graphics by moving mouse, also all the graphics can be
saved to the hard drive.

Figure 6: “Statistics tab screen” of JeoStat for delineating his-
togram and descriptive statistics of porosity data

Figure 7: JeoStat “Statistics tab screen” for post plot of observed
porosity data



A Computer Program for Practical Semivariogram Modeling and Ordinary Kriging | 669

3.3 Semivariogram Analysis

The tab of the window frame contains text boxes for pa-
rameters required modelling the experimental semivar-
iogram, such as direction, tolerance angles, number of
lag and lag distance. After the parameters have been en-
tered and “Calculate experimental semivariogram” button
clicked, the experimental semivariogram graphic for the
selected parameters can be monitored in the picture box
labelled "selected". This means that the user can select
whatever direction and tolerance angle he wants. In ad-
dition, there are also predefined direction and tolerance
angles such as 0∘-22.5∘. By clicking “Calculate specify
particular direction” button, experimental semivariogram
graphics for the predefined direction and tolerance an-
gles of 0∘-90∘, 0∘-22.5∘, 45∘-22.5∘, 90∘-22.5∘ and 135∘-22.5∘
can be easily monitored on the other picture boxes, for
anisotropy or for computation of experimental semivari-
ograms for different directions (Fig. 8). The obtained ex-
perimental semivariogram graphics can be customized by
activating “show number of pairs” and “draw a line be-
tween pairs” checkboxes.

It is important to highlight that JeoStat includes the
commonly used theoretical semivariograms models given
in Fig. 2. These are spherical, gaussian, exponential, linear,
generalized linear, hole effect and paddington mix. Once a
set of experimental semivariogram is computed, one of the
theoretical semivariogrammodels is chosen from a combo
box. Subsequently, the model’s parameters can be modi-
fied either by mouse events on the graphics or by enter-
ing a plausible value to the textboxes by hand or click-
ing the scroll bar for easily and quickly fitting. Alterna-
tively, theoretical model parameters can be entered by
clicking a mouse on the semivariogram screen. The pro-
gram employs two types of testing techniques for validat-
ing the model semivariogram. One of the testing meth-
ods is “Cressie goodness-of-fit” model [34], in which test-
ing result is presented to the user in a text box on this
tab screen for the prior knowledge of the user. The other
testing method, cross validation, can be performed on the
other tab screen of the JeoStat.

Thenumerical results of the experimental and theoret-
ical semivariogrammodels computed in this tab are saved
on a file with "var" extension and, if desired, the user can
use these results to draw semivariogram graphics on an-
other program, such as Microsoft Excel. All the graphics
from this screen might be saved to hard drive as an image
file “jpg”.

Figure 8: A view of the JeoStat’ semivariogram analysis screen

Figure 9: A view of the cross validation test

3.4 Cross Validation Test

This program utilizes Eq. (4) to validate theoretical semi-
variogram model. For this purpose, JeoStat automat-
ically imports necessary semivariogram parameters –
determined preliminarily by using “Cressie goodness-of-
fit” in section 3.3- from the previous tab screen without
needing to enter manually into the text boxes. However,
if users need to, these parameters can be entered manu-
ally as well. During the test, after entering the model and
search ellipse parameters into the relevant text boxes and
clicking “Cross Validation” button, the user can be moni-
tored the test results and graphics on the screen (Fig. 9).

The numerical results of the cross-validation are saved
on a file with “res” extension. For example, the numerical
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Figure 10: Polygon dataset format

results were automatically saved as “Porosity.res” in this
study, The user can use these results to draw a scatter plot
on another program. All the graphics from this screen can
be saved to hard drive by mouse click events.

3.5 Kriging Interpolation

Point or block estimations can be computed on this tab
screen by using Ordinary Kriging interpolation technique
given in Eqs. (6-11). For this, firstly, the grids are defined for
the region that the estimation will be performed on and
then these grids estimates are performed using theoreti-
cal semivariogram functions determined on the previous
screen.

At this stage of the JeoStat, the user defines the grid
dimensions by entering the number of grids and grid dis-
tance on the text boxes to divide the prediction region
into two or three-dimensional grids. The number of grids
and grid size are user dependent. JeoStat allows the user
to perform estimation for the whole rectangular region or
only for the specified irregular or regular polygonal re-
gion. If the user performs theOrdinary Kriging estimations
on grids located in a certain polygon, firstly the check-
box must be checked to load convex or concave polygon
dataset (Fig. 10). After the grid has been defined, the user
can enter the parameters for the search ellipse or required
kriging from the screen as seen in Fig. 11.

The numerical results of kriging estimations and es-
timation errors (kriging standard deviation) in this tab
screen are savedwith a “grd” extension file and, if needed,
the results can be plottedwith another program. Addition-
ally, “Grid Node Editor” helps the user to see kriged esti-
mates or kriging errors values through moving the mouse
(Fig. 11).

3.6 Visualization of the Outputs

A Contouring Subroutine (Conrec) developed by
Bourke [48] and JCBLOK developed by Carr and Mela [49]

Figure 11: Demonstration of estimate and kriging variance using
mouse events applied to mapped kriging results

were integrated into JeoStat to enable contouring and
visualization of estimation results. To do contouring of
kriging estimates (Eq. 6) and estimation errors (kriging
standard deviation) (Eq. 8) in JeoStat, a user only need
to enter the data surface and the contour levels want
to draw. The contour maps are presented to the user as
fully digitized in JeoStat. As such, by using a mouse, the
numerical values (easting, nothing, kriging estimates and
estimation errors) of any point value in the map can be
viewed on the text boxes (Fig. 11).

4 Case Study
In this case study, we applied the geostatistical modelling
to analyze an example oil field porosity data, available as
a JeoStat’s sample data file. In order to identify variance
structure of porosity measurements, experimental semi-
variance values in different directions and distances were
calculated using Eqs. (1-3) and JeoStat. Resulting semi-
variograms were plotted (Fig. 8, Fig. 12). The experimen-
tal semivariogram exhibited a parabolic behaviour around
the origin and reached its sill value asymptotically, indi-
cating that a Gaussian model (Fig. 1e) would show a good
fit (Fig 12a). Data set was used in GeoEAS [21] and Vari-
owin [23] to check Jeostat program results of experimen-
tal semivariograms. It was observed that JeoStat semivari-
ances are exactly the samewith those ones, indicating that
mathematical algorithms in JeoStat are correct.

Jack-knifing cross-validation procedure was carried
out to check if theoretical semivariogrammodelswerewell
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Figure 12: Experimental (line with markers) and theoretical semivariogram (continuous line) models for porosity data set

fitted to the data. Fig. 7 summarizes cross-validation re-
sults. In this method, the data were one by one removed
from the 96 actual values and estimated from the remain-
ing 95 data bymeans of theOrdinary Kriging technique. In
the estimations, at most 16 and at least 2 observation val-
ues falling under the kriging search dimension were used.
MRE and RVAR were calculated based on Eq. (4). In or-
der to carry out an impartial estimation according to Clark
and Harper [25], the variance of the reduced errors (RVAR)
is expected to be "1" or within 1 ± 2

√︀
2/N (N being num-

ber of data points), and their average (MRE) is expected
to be “0”. In the current analysis the average of the re-
duced error, -0.0157 is as close as 0.00 and their variance
is within1 ± 2

√︀
2/95. As a result, it is possible to state

that the selected semivariogram model parameters were
valid and expectable for estimation of the porosity at the
unsampled locations (Fig. 9). It is important to state that
cross-validation results of GeoEAS [21] were rather congru-
ent with the results of JeoStat program.

With the definition of the correlation functions de-
pending on the distances of the variable of porosity value,
it is now possible to estimate how these variables are dis-
tributed along the reservoir. For this purpose, at first oil
fieldboundaries (Polygonal area inFig. 10 andFig. 13)were
defined as a polygon area with known coordinates, as pre-

sented in Fig. 13. Then, the study area with the UTM coor-
dinates of 254500 - 256000 (east-west), 4224650 - 4226150
(north-south) was divided into a total of 6400 blocks with
the dimensions 18.75 m × 18.75 m. The average porosity
value of each block was estimated via the ordinary block
kriging method (Eq. 7, Fig. 11) to get table data. Porosity
contour map (Fig. 13) was generated by using table data.

The user can get estimated values at any grid-cell by
moving amouse on the screen. Thus, kriged estimates and
kriging errors of the cell, as well as coordinates, are shown
on the label. For example, as seen in Fig. 13, the cursor
was located on the u(255226.5, 4225591) coordinate; at this
point, kriged porosity is 25.83 and kriging error is 0.87. It
must be highlighted that of JeoStat is not a contouring pro-
gram. Therefore, it was not aimed at assigning values to
the contour lines in Figure 13. Contrary to this, JeoStat pro-
vides an advantage to the user for visual inspection of the
map by using “Grid Node Editor”. This trait of the program
is important for detecting errors in the data or getting es-
timated values for grids. Furthermore, kriging error values
lead us to make a decision on the efficiency of sampling
used in mapping.

The user of JeoStat can also export kriged estimates,
located in the polygonal area presented in Figure 13, as
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Figure 13: A view of “Grid Node Editor” for porosity contour map of
the kriging estimation. Polygonal area stands for oil field bound-
aries

*.txt file. This file may be used in complex contouring pro-
grams such as Golden Software [50] or any GIS software to
generate cartographicmaps. Then, elegantmaps as shown
in Figure 14 might be produced in other platforms without
carrying out further geostatistical analysis.

5 Conclusions
In this study, a program, namely, JeoStat for the spatial
analysis has been developed by using a Visual Basic pro-
gram. Capabilities of the JeoStat program have been de-
scribed trough utilizing the sample data set of the poros-
ity. The program is able to compute through all the main
steps of the basic geostatistical analysis, including semi-
variogrammodelling, cross-validation and ordinary block
kriging. Furthermore, the same data set was used in an-
other commercial and public domain programs to com-
pare the validity of JeoStat results. Comparisons of JeoStat
program outputs with the outputs of other programs lead
us to conclude that JeoStat was able to produce depend-
able results. Because of its true and dependable outputs
plus easy accessibility via the internet, JeoStat is readily
available to students, researchers, consultants and corpo-
rations of any size. As such, this program has been used
by the authors in teaching activities for 3 years and it has
been observed that the students can easily understand the
courses’ theoretical backgroundwhen they play with their
own data by using such freely available software. It also
helps students to comprehend how spatial data might be
evaluated with the aid of a computer. Students also attain

Figure 14: A view of A porosity map generated by Surfer 8.01 [50]
using JeoStat results

concept of computer-aided valuation and learn commer-
cial software easily in further advanced courses.

Acknowledgement: The authors would like to thank Dr.
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some corrections and his valuable suggestions.

A Appendix
JeoStat software package, source codes and sample data
files are available at http://www.jeostat.com/JeoStat_2017.
0.rar
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