Basit öğe kaydını göster

dc.contributor.authorKenanoğlu, Raif
dc.contributor.authorBaltacıoğlu, Mustafa Kaan
dc.contributor.authorDemir, Mehmet Hakan
dc.contributor.authorErkınay, Merve Özdemir
dc.date.accessioned2020-05-24T14:24:14Z
dc.date.available2020-05-24T14:24:14Z
dc.date.issued2020
dc.identifier.citationKenanoğlu, R., Baltacıoğlu, M.K., Demir, M.H., Erkınay Özdemir, M. (2020). Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.02.108
dc.identifier.issn0360-3199
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2020.02.108
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1044
dc.description.abstractMost of the studies on conventional fuel types that can be used in internal combustion engines have been made in order to improve performance values. Nowadays environmental problems have shown that emission values are more important and interest in low carbon alternative fuels has highly increased in recent years. In this study, performance and emission values of soybean biodiesel (B25) fuel mixture used in diesel engine were investigated in detail by making different ratios of hydroxy (HHO) enrichment (3, 5 and 7 L/min). HHO enrichments increased brake torque and power outputs with direct correlation to flow rate amount; at the same time brake specific fuel consumption has decreased. Also, one of the main objectives of this study is to predict the optimum hydrogen requirement against performance reductions and NOx formations among test fuels (3, 5, and 7 L/min HHO enriched B25), too by using artificial intelligence. For developing the ANN structure, Levenberg-Marquardt (LM) learning algorithm was used to adjust the weights in the cascade forward network. The results show that the ANN model has 95,82%, 96,07%, and 92,35% estimation accuracies for motor torque, motor power, and NOx emission, respectively. © 2020 Hydrogen Energy Publications LLCen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.ijhydene.2020.02.108en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANNen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBiodieselen_US
dc.subjectCI engineen_US
dc.subjectHydroxy (HHO)en_US
dc.subject.classificationBiodiesel | Diesel engines | Diesel fuelsen_US
dc.subject.otherAlternative fuelsen_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherBiodieselen_US
dc.subject.otherBrakesen_US
dc.subject.otherDiesel enginesen_US
dc.subject.otherHydrogen fuelsen_US
dc.subject.otherNeural networksen_US
dc.subject.otherNitrogen oxidesen_US
dc.subject.otherBrake specific fuel consumptionen_US
dc.subject.otherEnvironmental problemsen_US
dc.subject.otherImprove performanceen_US
dc.subject.otherLevenberg-Marquardt learning algorithmsen_US
dc.subject.otherPerformance and emissionsen_US
dc.subject.otherSoybean biodieselsen_US
dc.subject.otherDual fuel enginesen_US
dc.titlePerformance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approachesen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Hydrogen Energyen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mekatronik Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorKenanoğlu, Raifen_US
dc.contributor.isteauthorBaltacıoğlu, Mustafa Kaanen_US
dc.contributor.isteauthorDemir, Mehmet Hakanen_US
dc.contributor.isteauthorErkınay, Merve Özdemiren_US
dc.relation.indexScopusen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster