dc.contributor.author | Manoj, Devaraj | |
dc.contributor.author | Rajendran, Saravanan | |
dc.contributor.author | Qin, Jiaqian | |
dc.contributor.author | Sundaravadivel, Elumalai | |
dc.contributor.author | Yola, Mehmet Lütfi | |
dc.contributor.author | Atar, Necip | |
dc.contributor.author | Gracia, F. | en_US |
dc.contributor.author | Rabah, Boukherroub | en_US |
dc.contributor.author | Gracia-Pinilla, M.A. | en_US |
dc.contributor.author | Gupta, Vinod Kumar | en_US |
dc.date.accessioned | 2020-05-24T14:24:19Z | |
dc.date.available | 2020-05-24T14:24:19Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Manoj, D., Rajendran, S., Qin, J., Sundaravadivel, E., Yola, M. L., Atar, N., Gracia, F., Boukherroub, R., Gracia-Pinilla, M. A., & Gupta, V. K. (2019). Heterostructures of mesoporous TiO2 and SnO2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets. Journal of colloid and interface science, 542, 45–53. https://doi.org/10.1016/j.jcis.2019.01.118 | en_US |
dc.identifier.issn | 0021-9797 | |
dc.identifier.uri | https://doi.org/10.1016/j.jcis.2019.01.118 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/1068 | |
dc.description | PubMed ID: 30721835 | en_US |
dc.description.abstract | The detection of water soluble vitamins using electrochemical method is widely established in pharmaceutical quality control laboratories, and especially the recent advances in hybrid heterostrucure nanomaterials has devoted to enhance the significant analytical parameters like sensitivity, selectivity and fast response time. Herein, we report the synthesis of a hybrid heterostructure comprising SnO 2 nanoparticles supported mesoporous TiO 2 , and the obtained nanocomposite were fabricated over glassy carbon electrode (GCE) for the electrochemical oxidation of vitamin B 6 in pharmaceutical tablets. The designed SnO 2 -TiO 2 /GC modified electrode exhibits well-defined oxidation peak with lowering over-potential and larger signal response compared to the pristine counterparts, and it is mainly due to the formation of abundant active surface layer offered by SnO 2 cocatalyst, and thus significantly enhances the electrochemical surface area. Differential pulse voltammetry (DPV) measurements revealed a sharp increase in the anodic peak current upon addition of increasing concentration of vitamin B 6 . The analytical performance of the modified electrode displayed a wide linear range (0.1–31.4 µM), high selectivity, and excellent sensitivity (759.73 µA mM ?1 cm ?2 ) with low detection limit (35 nM). Thus, the resultant mesoporous hybrid nanocatalyst provides an efficient electrochemical platform for determination of various potential analytes. © 2019 Elsevier Inc. | en_US |
dc.description.sponsorship | 11170414 | en_US |
dc.description.sponsorship | The authors (S.R., F.G.) acknowledge the support of CONICYT , Government of Chile through the project CONICYT/FONDAP/15110019 . The author (S.R) acknowledge FONDECYT Government of Chile (Project No.: 11170414), for the support to carry out this project. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Academic Press Inc. | en_US |
dc.relation.isversionof | 10.1016/j.jcis.2019.01.118 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Electrochemical sensor | en_US |
dc.subject | Mesoporous | en_US |
dc.subject | Tin oxide (SnO 2 ) cocatalyst | en_US |
dc.subject | Titanium dioxide (TiO 2 ) | en_US |
dc.subject | Vitamin B6 | en_US |
dc.subject.classification | Vitamins | Voltammetry | Water-soluble vitamins | en_US |
dc.subject.classification | Chemistry | |
dc.subject.classification | Physical | |
dc.subject.other | Biosynthesis | en_US |
dc.subject.other | Coenzymes | en_US |
dc.subject.other | Electrochemical oxidation | en_US |
dc.subject.other | Electrochemical sensors | en_US |
dc.subject.other | Glass membrane electrodes | en_US |
dc.subject.other | Mesoporous materials | en_US |
dc.subject.other | Nanocatalysts | en_US |
dc.subject.other | Tin dioxide | en_US |
dc.subject.other | Tin oxides | en_US |
dc.subject.other | TiO2 nanoparticles | en_US |
dc.subject.other | Titanium dioxide | en_US |
dc.subject.other | Titanium oxides | en_US |
dc.subject.other | Voltammetry | en_US |
dc.subject.other | Cocatalyst | en_US |
dc.subject.other | Differential pulse voltammetry | en_US |
dc.subject.other | Electrochemical platforms | en_US |
dc.subject.other | Electrochemical surface area | en_US |
dc.subject.other | Pharmaceutical quality control | en_US |
dc.subject.other | Titanium dioxides (TiO2) | en_US |
dc.subject.other | Chemical detection | en_US |
dc.subject.other | Nanocomposite | en_US |
dc.subject.other | Nanoparticle | en_US |
dc.subject.other | Pyridoxine | en_US |
dc.subject.other | Tin oxide nanoparticle | en_US |
dc.subject.other | Titanium dioxide nanoparticle | en_US |
dc.subject.other | Unclassified drug | en_US |
dc.subject.other | Pyridoxine | en_US |
dc.subject.other | Stannic oxide | en_US |
dc.subject.other | Tin derivative | en_US |
dc.subject.other | Titanium | en_US |
dc.subject.other | Chemical structure | en_US |
dc.subject.other | Cyclic potentiometry | en_US |
dc.subject.other | Differential pulse voltammetry | en_US |
dc.subject.other | Electrochemical analysis | en_US |
dc.subject.other | High resolution transmission electron microscopy | en_US |
dc.subject.other | Impedance spectroscopy | en_US |
dc.subject.other | Limit of detection | en_US |
dc.subject.other | Nanocatalyst | en_US |
dc.subject.other | Nanofabrication | en_US |
dc.subject.other | Priority journal | en_US |
dc.subject.other | Reproducibility | en_US |
dc.subject.other | Sensitivity analysis | en_US |
dc.subject.other | Surface area | en_US |
dc.subject.other | Surface property | en_US |
dc.subject.other | X ray diffraction | en_US |
dc.subject.other | X ray fluorescence | en_US |
dc.subject.other | X ray photoemission spectroscopy | en_US |
dc.subject.other | chemistry | en_US |
dc.subject.other | Electrode | en_US |
dc.subject.other | Oxidation reduction reaction | en_US |
dc.subject.other | Porosity | en_US |
dc.subject.other | Sensitivity and specificity | en_US |
dc.subject.other | Tablet | en_US |
dc.subject.other | Electrochemical Techniques | en_US |
dc.subject.other | Limit of Detection | en_US |
dc.subject.other | Nanocomposites | en_US |
dc.subject.other | Oxidation-Reduction | en_US |
dc.subject.other | Porosity | en_US |
dc.subject.other | Sensitivity and Specificity | en_US |
dc.subject.other | Tin Compounds | en_US |
dc.subject.other | Voltammetric determination | |
dc.subject.other | Pyridoxine vitamin-b-6 | |
dc.subject.other | Composite electrode | |
dc.subject.other | Carbon nanotube | |
dc.subject.other | Ionic liquid | |
dc.subject.other | Nanocomposite | |
dc.subject.other | Enhancement | |
dc.subject.other | Degradation | |
dc.subject.other | Sensor | |
dc.subject.other | Gas | |
dc.title | Heterostructures of mesoporous TiO 2 and SnO 2 nanocatalyst for improved electrochemical oxidation ability of vitamin B6 in pharmaceutical tablets | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Colloid and Interface Science | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümü | en_US |
dc.identifier.volume | 542 | en_US |
dc.identifier.startpage | 45 | en_US |
dc.identifier.endpage | 53 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Yola, Mehmet Lütfi | en_US |
dc.relation.index | Web of Science - Scopus - PubMed | |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |