Basit öğe kaydını göster

dc.contributor.authorÜneş, Fatih
dc.contributor.authorDemirci, Mustafa
dc.contributor.authorTaşar, Bestami
dc.contributor.authorKaya, Yunus Ziya
dc.contributor.authorVarçin, Hakan
dc.date.accessioned2020-05-24T14:24:21Z
dc.date.available2020-05-24T14:24:21Z
dc.date.issued2019
dc.identifier.citationÜneş, F., Demirci, M., TaşAr, B., Kaya, Y.Z., Varçin, H. (2019). Modeling of dam reservoir volume using generalized regression neural network, support vector machines and m5 decision tree models. Applied Ecology and Environmental Research 17(3), pp. 7043-7055. https://doi.org/10.15666/aeer/1703_70437055en_US
dc.identifier.issn1589-1623
dc.identifier.urihttps://doi.org/10.15666/aeer/1703_70437055
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1076
dc.description.abstractDam reservoir capacity estimation is an important issue for operation, design and safety assessments of dam structures. In this study, the reservoir capacity of the Stony Brook dam in the USA was estimated by Generalized Regression Neural Network (GRNN), Support Vector Machines (SVM) and M5 Tree Model (M5T) methods with using 3726 data taken from United States Geological Survey Institute (USGS) for 2012-2015 years. Listed soft computing techniques give opportunities to researchers working on non-linear problems. Based on the non-linear approach, models are generated by using precipitation, flow, temperature hydrological parameters. The models were compared with each other according to the three statistical criteria, namely, mean absolute error (MAE), root mean square error (RMSE), and determination coefficient. As a result of the study, it is seen that Support Vector Machines (SVM) models have better performance in predicting dam reservoir level than the other used soft computing models. © 2019, ALÖKI Kft., Budapest, Hungary.en_US
dc.language.isoengen_US
dc.publisherCorvinus University of Budapesten_US
dc.relation.isversionof10.15666/aeer/1703_70437055en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEstimationen_US
dc.subjectNeural networken_US
dc.subjectReservoir managementen_US
dc.subjectSoft computing techniquesen_US
dc.subjectStatistical approachen_US
dc.subject.classificationArtificial neural network | Wavelet | Flood forecastingen_US
dc.subject.classificationEcologyen_US
dc.subject.classificationEnvironmental Sciencesen_US
dc.subject.otherRiveren_US
dc.subject.otherPredictionen_US
dc.titleModeling of dam reservoir volume using generalized regression neural network, support vector machines and m5 decision tree modelsen_US
dc.typearticleen_US
dc.relation.journalApplied Ecology and Environmental Researchen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.contributor.departmentİskenderun Meslek Yüksekokulu -- İnşaat Teknolojisi Bölümüen_US
dc.identifier.volume17en_US
dc.identifier.issue3en_US
dc.identifier.startpage7043en_US
dc.identifier.endpage7055en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜneş, Fatihen_US
dc.contributor.isteauthorDemirci, Mustafaen_US
dc.contributor.isteauthorTaşar, Bestamien_US
dc.contributor.isteauthorVarçin, Hakanen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US
dc.relation.indexWeb of Science - Scopusen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster