Basit öğe kaydını göster

dc.contributor.authorÜneş, Fatih
dc.contributor.authorKaya, Yunus Ziya
dc.contributor.authorMamak, Mustafa
dc.date.accessioned2020-05-24T15:31:46Z
dc.date.available2020-05-24T15:31:46Z
dc.date.issued2020
dc.identifier.citationÜneş, F., Kaya, Y.Z., Mamak, M. (2020). Daily reference evapotranspiration prediction based on climatic conditions applying different data mining techniques and empirical equations. Theoretical and Applied Climatology, 141 (1-2), pp. 763-773. https://doi.org/10.1007/s00704-020-03225-0en_US
dc.identifier.issn0177-798X
dc.identifier.issn1434-4483
dc.identifier.urihttps://doi.org/10.1007/s00704-020-03225-0
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1106
dc.descriptionWOS: 000531795900003en_US
dc.description.abstractConsidering evapotranspiration takes a basic role in the hydrologic cycle, water resources management, and irrigation water requirements. Evapotranspiration estimation is not an easy case because of the number of direct and indirect effects. The ability of the M5 model tree (M5T); adaptive neuro-fuzzy inference system (ANFIS); support vector machines (SVM); Hargreaves-Samani, Ritchie, Turc, and Penman FAO 56 empirical equations; and multilinear regression (MLR) for modeling daily reference evapotranspiration is investigated. Daily climatic data, air temperature (T), relative humidity (RH), wind speed (U), and solar radiation (SR) from De Soto County, Florida, USA, station are used as inputs for the training of the models and calculation of equations. Mean square error (MSE), mean absolute error (MAE), and correlation coefficient statistics are computed to evaluate the performances of the created models. A total comparison is done between all results to underline how effective is soft computing techniques. Also, the impact of each meteorological parameter on evapotranspiration is investigated by using ANFIS, MLR, and SVM methods as a part of the parameter effect study. According to the error calculations and correlation coefficient, Turc empirical formula found better than other empirical equations. All data-driven techniques gave better results than empirical equations. The highest correlation coefficient is calculated for ANFIS, and the minimum errors are calculated for radial basis function SVM.en_US
dc.description.sponsorshipOsmaniye Korkut Ata Universityen_US
dc.description.sponsorshipThis study was funded by Osmaniye Korkut Ata University with a project number OKUBAP-2015-PT3-001.en_US
dc.language.isoengen_US
dc.publisherSpringer Wienen_US
dc.relation.isversionof10.1007/s00704-020-03225-0en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subject.classificationMeteorology & Atmospheric Sciencesen_US
dc.subject.classificationEvapotranspiration | Crop Coefficient | Lysimetersen_US
dc.subject.otherM5 model treeen_US
dc.subject.otherNeural-Network modelsen_US
dc.subject.otherPan evaporationen_US
dc.subject.otherClimate conditions
dc.subject.otherComputer simulation
dc.subject.otherError analysis
dc.subject.otherEstimation method
dc.subject.otherFuzzy mathematics
dc.subject.otherNumerical model
dc.subject.otherPerformance assessment
dc.subject.otherSupport vector machine
dc.subject.otherUnited States
dc.titleDaily reference evapotranspiration prediction based on climatic conditions applying different data mining techniques and empirical equationsen_US
dc.typearticleen_US
dc.relation.journalTheoretical and Applied Climatologyen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜneş, Fatihen_US
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster