Basit öğe kaydını göster

dc.contributor.authorRifaioğlu, Ahmet Süreyya
dc.contributor.authorNalbat, Esra
dc.contributor.authorAtalay, Volkan
dc.contributor.authorMartin, Maria Jesus
dc.contributor.authorÇetin-Atalay, Rengül
dc.contributor.authorDoğan, Tunca
dc.date.accessioned2020-05-24T15:31:50Z
dc.date.available2020-05-24T15:31:50Z
dc.date.issued2020
dc.identifier.citationRifaioglu, A.S., Nalbat, E., Atalay, V., Martin, M.J., Cetin-Atalay, R., Doǧan, T. (2020). DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chemical Science, 11 (9), pp. 2531-2557. https://doi.org/10.1039/c9sc03414een_US
dc.identifier.issn2041-6520
dc.identifier.issn2041-6539
dc.identifier.urihttps://doi.org/10.1039/c9sc03414e
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1127
dc.descriptionWOS: 000519240000025en_US
dc.description.abstractThe identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting novel drug-target interactions (DTIs). In this study, we propose a large-scale DTI prediction system, DEEPScreen, for early stage drug discovery, using deep convolutional neural networks. One of the main advantages of DEEPScreen is employing readily available 2-D structural representations of compounds at the input level instead of conventional descriptors that display limited performance. DEEPScreen learns complex features inherently from the 2-D representations, thus producing highly accurate predictions. The DEEPScreen system was trained for 704 target proteins (using curated bioactivity data) and finalized with rigorous hyper-parameter optimization tests. We compared the performance of DEEPScreen against the state-of-the-art on multiple benchmark datasets to indicate the effectiveness of the proposed approach and verified selected novel predictions through molecular docking analysis and literature-based validation. Finally, JAK proteins that were predicted by DEEPScreen as new targets of a well-known drug cladribine were experimentally demonstrated in vitro on cancer cells through STAT3 phosphorylation, which is the downstream effector protein. The DEEPScreen system can be exploited in the fields of drug discovery and repurposing for in silico screening of the chemogenomic space, to provide novel DTIs which can be experimentally pursued. The source code, trained "ready-to-use" prediction models, all datasets and the results of this study are available at ; https://github.com/cansyl/DEEPscreen.en_US
dc.description.sponsorshipTUBITAK, TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); British Council, UK [116E930]; European Molecular Biology Laboratory core fundsen_US
dc.description.sponsorshipThis work was supported by the Newton/Katip Celebi Institutional Links program by TUBITAK, Turkey and British Council, UK (project no: 116E930, project acronym: CROssBAR), and the European Molecular Biology Laboratory core funds.en_US
dc.language.isoengen_US
dc.publisherRoyal Soc Chemistryen_US
dc.relation.isversionof10.1039/c9sc03414een_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.classificationChemistryen_US
dc.subject.classificationMultidisciplinaryen_US
dc.subject.classificationLigands | Docking | Structure-based virtualen_US
dc.subject.otherDiscoveryen_US
dc.subject.otherLiganden_US
dc.subject.otherInhibitorsen_US
dc.subject.otherCladribineen_US
dc.subject.otherDesignen_US
dc.subject.otherReninen_US
dc.subject.otherDerivativesen_US
dc.subject.otherDockingen_US
dc.subject.otherPotenten_US
dc.subject.otherBenchmarkingen_US
dc.subject.otherConvolutionen_US
dc.subject.otherConvolutional neural networksen_US
dc.subject.otherDeep neural networksen_US
dc.subject.otherForecastingen_US
dc.subject.otherProteinsen_US
dc.subject.otherComputational approachen_US
dc.subject.otherDrug-target interactionsen_US
dc.subject.otherHyper-parameter optimizationsen_US
dc.subject.otherIn-silico screeningen_US
dc.subject.otherPhysical interactionsen_US
dc.subject.otherScreening proceduresen_US
dc.subject.otherStructural compoundsen_US
dc.subject.otherStructural representationen_US
dc.subject.otherDrug interactionsen_US
dc.titleDEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representationsen_US
dc.typearticleen_US
dc.relation.journalChemical Scienceen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-6717-4767en_US
dc.contributor.authorID0000-0002-1298-9763
dc.contributor.authorID0000-0003-2408-6606
dc.identifier.volume11en_US
dc.identifier.issue9en_US
dc.identifier.startpage2531en_US
dc.identifier.endpage2557en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorRifaioğlu, Ahmet Süreyyaen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US
dc.relation.indexWeb of Science - Scopus - PubMeden_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster