Basit öğe kaydını göster

dc.contributor.authorAltıntaş, Olcay
dc.contributor.authorAksoy, Murat
dc.contributor.authorÜnal, Emin
dc.contributor.authorAkgöl, Oğuzhan
dc.contributor.authorKaraaslan, Muharrem
dc.date.accessioned2020-05-24T15:32:00Z
dc.date.available2020-05-24T15:32:00Z
dc.date.issued2019
dc.identifier.citationAltıntaş, O., Aksoy, M., Ünal, E., Akgöl, O., Karaaslan, M. (2019). Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant. Measurement: Journal of the International Measurement Confederation, 145, pp. 678-686. https://doi.org/10.1016/j.measurement.2019.05.087
dc.identifier.issn0263-2241
dc.identifier.issn1873-412X
dc.identifier.urihttps://doi.org/10.1016/j.measurement.2019.05.087
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1181
dc.description0000-0003-3237-4392en_US
dc.descriptionWOS: 000474703500070en_US
dc.description.abstractIn this paper, we proposed an approach for locomotive maintenance systems by observing engine lube oil. The mechanical particles in lube oil give information about locomotive engine system condition. The engine lubricant is monthly monitored by a spectral analyzer (SA) to detect engine system failure and routine maintenance time. However, this old fashioned technique has many disadvantages such as non-real time measuring, high cost and time consumption. A novel approach is proposed to eliminate these disadvantages. The new method determines the lubricant sample conditions with respect to electrical characteristics by using artificial neural network (ANN). The study focuses on a relationship between mechanical particles (in ppm) and dielectric characteristics of the lube oil samples. Therefore, ANN method is applied to observe linear relation between observed and predicted dielectric constant and loss factor values of the engine oil samples. The electrical characteristics of the samples are observed at four frequency points (2.40 GHz, 5.80 GHz, 7.40 GHz and 9.60 GHz). ANN studies are realized by using data at these frequency points. The regression (R) coefficients are obtained as 0.7239, 0.7951, 0.8513 and 0.7463 for dielectric constant and 0.7627, 0.7196, 0.8015 and 0.7334 for dielectric loss, respectively. Moreover, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are calculated and examined. The obtained results are very sufficient and this approach can be applied to a sensor device having low cost and real time working mechanism in the future. (C) 2019 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipScientific Project Unit of Cukurova University [FDK-2018-10488]en_US
dc.description.sponsorshipThe authors would like to acknowledge the Scientific Project Unit of Cukurova University (FDK-2018-10488).en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.measurement.2019.05.087en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSpectral analysisen_US
dc.subjectDielectric measurement
dc.subjectArtificial neural network
dc.subjectEngine lubricant
dc.subject.classificationEngineering
dc.subject.classificationMultidisciplinary
dc.subject.classificationInstruments & Instrumentation
dc.subject.classificationDiffuse Solar Radiation | Clear Sky | Pyranometers
dc.subject.otherSolar-radiation prediction
dc.subject.otherDam-reservoir level
dc.subject.otherSpectral-analysis
dc.subject.otherThermal-conductivity
dc.subject.otherPermittivity
dc.subject.otherNanofluids
dc.subject.otherSurface
dc.subject.otherDielectric losses
dc.subject.otherDielectric properties
dc.subject.otherErrors
dc.subject.otherLocomotives
dc.subject.otherMaintenance
dc.subject.otherMean square error
dc.subject.otherNeural networks
dc.subject.otherSpectrum analysis
dc.subject.otherSpectrum analyzers
dc.subject.otherSystems engineering
dc.subject.otherDielectric characteristics
dc.subject.otherDielectric measurements
dc.subject.otherElectrical characteristic
dc.subject.otherEngine lubricants
dc.subject.otherMaintenance systems
dc.subject.otherMean absolute percentage error
dc.subject.otherRoutine maintenance
dc.subject.otherEngines
dc.titleArtificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricanten_US
dc.typearticleen_US
dc.relation.journalMeasurement: Journal of the International Measurement Confederationen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume145en_US
dc.identifier.startpage678en_US
dc.identifier.endpage686en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorAltıntaş, Olcay
dc.contributor.isteauthorÜnal, Emin
dc.contributor.isteauthorAkgöl, Oğuzhan
dc.contributor.isteauthorKaraaslan, Muharrem
dc.relation.indexWeb of Science - Scopus
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster