Basit öğe kaydını göster

dc.contributor.authorDal, Kaan
dc.contributor.authorCansız, Ömer Faruk
dc.contributor.authorÖrnek, Murat
dc.contributor.authorTüredi, Yakup
dc.date.accessioned2020-05-24T15:32:08Z
dc.date.available2020-05-24T15:32:08Z
dc.date.issued2019
dc.identifier.citationDal, K., Cansiz, O.F., Ornek, M., Turedi, Y. (2019). Prediction of footing settlements with geogrid reinforcement and eccentricity. Geosynthetics International, 26 (3), pp. 297-308. https://doi.org/10.1680/jgein.19.00008
dc.identifier.issn1072-6349
dc.identifier.issn1751-7613
dc.identifier.urihttps://doi.org/10.1680/jgein.19.00008
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1214
dc.descriptionWOS: 000473346800007en_US
dc.description.abstractThis study presents settlement predictions for footings with geogrid reinforcement and biaxial eccentricity using multi-linear regression (MLR) and artificial neural network (ANN) methods. The effects of central, uniaxial and biaxial eccentric loading conditions on embedded and non-embedded square footings in unreinforced and reinforced soils were investigated with laboratory model tests given in the first part of the study. Variations in the bearing capacity were determined through vertical load versus settlement curves drawn after each test. In the second part of this study, MLR and ANN models used to predict settlement were improved using independent variables related with the footings and geogrid. The results showed that fluctuations in the datasets of the settlement were very well reflected by the ANN methods.en_US
dc.language.isoengen_US
dc.publisherICE Publishingen_US
dc.relation.isversionof10.1680/jgein.19.00008en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeosyntheticsen_US
dc.subjectSettlement
dc.subjectBearing capacity
dc.subjectSquare footing
dc.subjectBiaxial eccentricity
dc.subjectMLR
dc.subjectANN
dc.subject.classificationEngineering
dc.subject.classificationGeological
dc.subject.classificationGeosciences
dc.subject.classificationMultidisciplinary
dc.subject.classificationMaterials Science
dc.subject.classificationMultidisciplinary
dc.subject.classificationGeocell | Geogrid | Geosynthetics
dc.subject.otherModel
dc.subject.otherBehavior
dc.subject.otherForecasting
dc.subject.otherNeural networks
dc.subject.otherReinforcement
dc.subject.otherBi-axial eccentric loadings
dc.subject.otherBiaxial eccentricity
dc.subject.otherEmbedded square footing
dc.subject.otherGeosynthetics
dc.subject.otherLaboratory model test
dc.subject.otherMulti-linear regression
dc.subject.otherSquare footings
dc.subject.otherGeosynthetic materials
dc.subject.otherArtificial neural network
dc.subject.otherBearing capacity
dc.subject.otherEccentricity
dc.subject.otherGeogrid
dc.subject.otherGround settlement
dc.subject.otherLoading
dc.subject.otherPrediction
dc.subject.otherRegression analysis
dc.subject.otherSoil reinforcement
dc.titlePrediction of footing settlements with geogrid reinforcement and eccentricityen_US
dc.typearticleen_US
dc.relation.journalGeosynthetics Internationalen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume26en_US
dc.identifier.issue3en_US
dc.identifier.startpage297en_US
dc.identifier.endpage308en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorDal, Kaan
dc.contributor.isteauthorCansız, Ömer Faruk
dc.contributor.isteauthorÖrnek, Murat
dc.contributor.isteauthorTüredi, Yakup
dc.relation.indexWeb of Science - Scopus
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster