Basit öğe kaydını göster

dc.contributor.authorBadem, Hasan
dc.contributor.authorTürkuşağı, Duran
dc.contributor.authorÇalışkan, Abdullah
dc.contributor.authorÇil, Zeynel Abidin
dc.date.accessioned2020-05-24T15:32:10Z
dc.date.available2020-05-24T15:32:10Z
dc.date.issued2019
dc.identifier.citationH. Badem, D. Turkusagi, A. Caliskan and Z. A. Çil. (2019). Feature Selection Based on Artificial Bee Colony for Parkinson Disease Diagnosis. 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 2019, pp. 1-4. DOI: 10.1109/TIPTEKNO.2019.8895090
dc.identifier.isbn978-1-7281-2420-9
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1224
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEYen_US
dc.descriptionWOS: 000516830900058en_US
dc.description.abstractParkinson's disease can be diagnosed by the speech signals. In general, the data obtained by feature extraction algorithms from the speech signals are used in any classification algorithm. Some of the extracted features have a high ability to represent the relevant problem, while others are low. In the diagnosis of Parkinson's disease, it is very important to determine which of the extracted features from the speech signals may increase the classification performance. In this paper, Artificial Bee Colony algorithm based feature selection approach is proposed for the solution of the mentioned problem. The proposed method has been analyzed in comparison with the well-known classification methods including support vector machine, k nearest neighbor, Naive Bayesian, decision tree.en_US
dc.description.sponsorshipBiyomedikal Klinik Muhendisligi Dernegi, Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumuen_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectParkinson diseaseen_US
dc.subjectFeature selection
dc.subjectArtificial bee colony
dc.subject.classificationEngineering
dc.subject.classificationBiomedical
dc.subject.classificationParkinson's Disease | Voice Disorders | Speech Signal
dc.subject.otherAlgorithm
dc.subject.otherClassification
dc.subject.otherOptimization
dc.subject.otherBiomedical engineering
dc.subject.otherComputer aided diagnosis
dc.subject.otherDecision trees
dc.subject.otherNearest neighbor search
dc.subject.otherNeurodegenerative diseases
dc.subject.otherSpeech communication
dc.subject.otherSupport vector machines
dc.subject.otherArtificial bee colonies
dc.subject.otherArtificial bee colony algorithms
dc.subject.otherClassification algorithm
dc.subject.otherClassification methods
dc.subject.otherClassification performance
dc.subject.otherFeature extraction algorithms
dc.subject.otherK-nearest neighbors
dc.subject.otherFeature extraction
dc.titleParkinson Hastalığı Teşhisi için Yapay Arı Kolonisi Temelli Öznitelik Seçimien_US
dc.title.alternativeFeature Selection Based on Artificial Bee Colony for Parkinson Disease Diagnosis
dc.typeconferenceObjecten_US
dc.relation.journal2019 Medical Technologies Congress (TIPTEKNO)en_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümüen_US
dc.identifier.startpage224en_US
dc.identifier.endpage227en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÇalışkan, Abdullah
dc.relation.indexWeb of Science - Scopus
dc.relation.indexWeb of Science Core Collection - Conference Proceedings Citation Index- Science


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster