dc.contributor.author | Badem, Hasan | |
dc.contributor.author | Türkuşağı, Duran | |
dc.contributor.author | Çalışkan, Abdullah | |
dc.contributor.author | Çil, Zeynel Abidin | |
dc.date.accessioned | 2020-05-24T15:32:10Z | |
dc.date.available | 2020-05-24T15:32:10Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | H. Badem, D. Turkusagi, A. Caliskan and Z. A. Çil. (2019). Feature Selection Based on Artificial Bee Colony for Parkinson Disease Diagnosis. 2019 Medical Technologies Congress (TIPTEKNO), Izmir, Turkey, 2019, pp. 1-4.
DOI: 10.1109/TIPTEKNO.2019.8895090 | |
dc.identifier.isbn | 978-1-7281-2420-9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/1224 | |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEY | en_US |
dc.description | WOS: 000516830900058 | en_US |
dc.description.abstract | Parkinson's disease can be diagnosed by the speech signals. In general, the data obtained by feature extraction algorithms from the speech signals are used in any classification algorithm. Some of the extracted features have a high ability to represent the relevant problem, while others are low. In the diagnosis of Parkinson's disease, it is very important to determine which of the extracted features from the speech signals may increase the classification performance. In this paper, Artificial Bee Colony algorithm based feature selection approach is proposed for the solution of the mentioned problem. The proposed method has been analyzed in comparison with the well-known classification methods including support vector machine, k nearest neighbor, Naive Bayesian, decision tree. | en_US |
dc.description.sponsorship | Biyomedikal Klinik Muhendisligi Dernegi, Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumu | en_US |
dc.language.iso | tur | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Parkinson disease | en_US |
dc.subject | Feature selection | |
dc.subject | Artificial bee colony | |
dc.subject.classification | Engineering | |
dc.subject.classification | Biomedical | |
dc.subject.classification | Parkinson's Disease | Voice Disorders | Speech Signal | |
dc.subject.other | Algorithm | |
dc.subject.other | Classification | |
dc.subject.other | Optimization | |
dc.subject.other | Biomedical engineering | |
dc.subject.other | Computer aided diagnosis | |
dc.subject.other | Decision trees | |
dc.subject.other | Nearest neighbor search | |
dc.subject.other | Neurodegenerative diseases | |
dc.subject.other | Speech communication | |
dc.subject.other | Support vector machines | |
dc.subject.other | Artificial bee colonies | |
dc.subject.other | Artificial bee colony algorithms | |
dc.subject.other | Classification algorithm | |
dc.subject.other | Classification methods | |
dc.subject.other | Classification performance | |
dc.subject.other | Feature extraction algorithms | |
dc.subject.other | K-nearest neighbors | |
dc.subject.other | Feature extraction | |
dc.title | Parkinson Hastalığı Teşhisi için Yapay Arı Kolonisi Temelli Öznitelik Seçimi | en_US |
dc.title.alternative | Feature Selection Based on Artificial Bee Colony for
Parkinson Disease Diagnosis | |
dc.type | conferenceObject | en_US |
dc.relation.journal | 2019 Medical Technologies Congress (TIPTEKNO) | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümü | en_US |
dc.identifier.startpage | 224 | en_US |
dc.identifier.endpage | 227 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Çalışkan, Abdullah | |
dc.relation.index | Web of Science - Scopus | |
dc.relation.index | Web of Science Core Collection - Conference Proceedings Citation Index- Science | |