Basit öğe kaydını göster

dc.contributor.authorKenanoğlu, Raif
dc.contributor.authorBaltacıoğlu, Mustafa Kaan
dc.contributor.authorDemir, Mehmet Hakan
dc.contributor.authorÖzdemir, Merve Erkınay
dc.date.accessioned2020-12-01T06:37:12Z
dc.date.available2020-12-01T06:37:12Z
dc.date.issued2020en_US
dc.identifier.citationKenanoğlu, R., Baltacıoğlu, M.K., Demir, M.H., Erkınay Özdemir, M. (2020). Performance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approaches. International Journal of Hydrogen Energy, 45 (49), pp. 26357-26369. https://doi.org/10.1016/j.ijhydene.2020.02.108en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2020.02.108
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1415
dc.description.abstractMost of the studies on conventional fuel types that can be used in internal combustion engines have been made in order to improve performance values. Nowadays environmental problems have shown that emission values are more important and interest in low carbon alternative fuels has highly increased in recent years. In this study, performance and emission values of soybean biodiesel (B25) fuel mixture used in diesel engine were investigated in detail by making different ratios of hydroxy (HHO) enrichment (3, 5 and 7 L/min). HHO enrichments increased brake torque and power outputs with direct correlation to flow rate amount; at the same time brake specific fuel consumption has decreased. Also, one of the main objectives of this study is to predict the optimum hydrogen requirement against performance reductions and NOx formations among test fuels (3, 5, and 7 L/min HHO enriched B25), too by using artificial intelligence. For developing the ANN structure, Levenberg-Marquardt (LM) learning algorithm was used to adjust the weights in the cascade forward network. The results show that the ANN model has 95,82%, 96,07%, and 92,35% estimation accuracies for motor torque, motor power, and NOx emission, respectively. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.ijhydene.2020.02.108en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHydroxy (HHO)en_US
dc.subjectBiodieselen_US
dc.subjectArtificial intelligenceen_US
dc.subjectCI engineen_US
dc.subjectANNen_US
dc.subject.classificationChemistry
dc.subject.classificationPhysical
dc.subject.classificationElectrochemistry
dc.subject.classificationEnergy & Fuels
dc.subject.classificationFuel Tests | Diesel Engines | Exhaust Emission
dc.subject.otherInternal-combustion engines
dc.subject.otherNatural-gas
dc.subject.otherVibration characteristics
dc.subject.otherExhaust emissions
dc.subject.otherBiodiesel
dc.subject.otherHydrogen
dc.subject.otherOil
dc.subject.otherOptimization
dc.subject.otherParameters
dc.subject.otherAlternative fuels
dc.subject.otherArtificial intelligence
dc.subject.otherBiodiesel
dc.subject.otherBrakes
dc.subject.otherDiesel engines
dc.subject.otherHydrogen fuels
dc.subject.otherNeural networks
dc.subject.otherNitrogen oxides
dc.subject.otherBrake specific fuel consumption
dc.subject.otherCI engine
dc.subject.otherEnvironmental problems
dc.subject.otherImprove performance
dc.subject.otherLevenberg-Marquardt learning algorithms
dc.subject.otherPerformance and emissions
dc.subject.otherSoybean biodiesels
dc.subject.otherDual fuel engines
dc.titlePerformance & emission analysis of HHO enriched dual-fuelled diesel engine with artificial neural network prediction approachesen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Hydrogen Energyen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mekatronik Mühendisliği Bölümü
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümü
dc.identifier.volume45en_US
dc.identifier.issue49en_US
dc.identifier.startpage26357en_US
dc.identifier.endpage26369en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorKenanoğlu, Raif
dc.contributor.isteauthorBaltacıoğlu, Mustafa Kaan
dc.contributor.isteauthorDemir, Mehmet Hakan
dc.contributor.isteauthorÖzdemir, Merve Erkınay
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster