Basit öğe kaydını göster

dc.contributor.authorBilgiç, Hasan Hüseyin
dc.contributor.authorMert, İlker
dc.date.accessioned2020-12-01T13:13:51Z
dc.date.available2020-12-01T13:13:51Z
dc.date.issued2020en_US
dc.identifier.citationBilgic, H.H., Mert, İ. (2020). Comparison of different techniques for estimation of incoming longwave radiation. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-020-02923-6en_US
dc.identifier.urihttps://doi.org/10.1007/s13762-020-02923-6
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1436
dc.description.abstractGlobal warming and climate change have left developing countries fragile in terms of agricultural production, and this vulnerability is expected to increase in the near future. The surface energy budget approach is a different perspective to the investigation of energy change over a landscape. In terms of budget items, the net radiation absorbed by the earth is equal to the difference between the sum of the incoming shortwave and longwave radiation and the sum of the reflected shortwave and emitted longwave radiation. The longwave radiation has important effects on dew deposition and drying on crop leaves in agricultural meteorology. A pyranometer provides routine measurement of the daytime radiation, but the longwave part of this radiation cannot be so readily measured at night time. In this study, multiple linear regression, artificial neural networks, deep learning, adaptive network-based fuzzy inference systems (ANFIS) and empirical models have been applied to model and estimate the mean incoming longwave radiation using atmospheric parameters. The ANFIS model appears to show good agreement between the measured and the estimated values for all days considered than other models.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s13762-020-02923-6en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGlobal warmingen_US
dc.subjectLongwave radiationen_US
dc.subjectMultilinear regressionen_US
dc.subjectANFISen_US
dc.subjectDeep learningen_US
dc.subject.classificationEnvironmental Sciences
dc.subject.classificationRadiative Cooling | Atmospheric Windows | Net Radiation
dc.subject.otherGlobal solar-radiationen_US
dc.subject.otherSupport vector regression
dc.subject.otherWave-radiation
dc.subject.otherNeural-networks
dc.subject.otherCloudy skies
dc.subject.otherClear
dc.subject.otherPrediction
dc.subject.otherFormula
dc.subject.otherWind
dc.subject.otherAgricultural robots
dc.subject.otherAgriculture
dc.subject.otherBudget control
dc.subject.otherDeveloping countries
dc.subject.otherFuzzy inference
dc.subject.otherFuzzy neural networks
dc.subject.otherGlobal warming
dc.subject.otherLinear regression
dc.subject.otherAdaptive network based fuzzy inference system
dc.subject.otherAgricultural productions
dc.subject.otherAtmospheric parameters
dc.subject.otherEmpirical model
dc.subject.otherGlobal warming and climate changes
dc.subject.otherLong-wave radiation
dc.subject.otherMultiple linear regressions
dc.subject.otherSurface energy budget
dc.subject.otherRadiation effects
dc.titleComparison of different techniques for estimation of incoming longwave radiationen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Environmental Science and Technologyen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorBilgiç, Hasan Hüseyin
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster