Basit öğe kaydını göster

dc.contributor.authorAltan, Gökhan
dc.contributor.authorKutlu, Yakup
dc.contributor.authorAllahverdi, Novruz
dc.date.accessioned2020-12-15T12:13:40Z
dc.date.available2020-12-15T12:13:40Z
dc.date.issued2020en_US
dc.identifier.citationAltan, G., Kutlu, Y., Allahverdi, N. (2020). Deep Learning on Computerized Analysis of Chronic Obstructive Pulmonary Disease IEEE Journal of Biomedical and Health Informatics, 24 (5), art. no. 8777195, pp. 1344-1350.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1506
dc.description.abstractGoal: Chronic obstructive pulmonary disease (COPD) is one of the deadliest diseases in the world. Because COPD is an incurable disease and requires considerable time to be diagnosed even by an experienced specialist, it becomes important to provide analysis abnormalities in simple ways. The aim of the study is to compare multiple machine-learning algorithms for the early diagnosis of COPD using multichannel lung sounds. Methods: Deep learning (DL) is an efficient machine-learning algorithm, which comprises unsupervised training to reduce optimization and supervised training by a feature-based distribution of classification parameters. This study focuses on analyzing multichannel lung sounds using statistical features of frequency modulations that are extracted using the Hilbert-Huang transform. Results: Deep-learning algorithm was used in the classification stage of the proposed model to separate the patients with COPD and healthy subjects. The proposed DL model with the Hilbert-Huang transform based statistical features was successful in achieving high classification performance rates of 93.67%, 91%, and 96.33% for accuracy, sensitivity, and specificity, respectively. Conclusion: The proposed computerized analysis of the multichannel lung sounds using DL algorithms provides a standardized assessment with high classification performance. Significance: Our study is a pioneer study that directly focuses on the lung sounds to separate COPD and non-COPD patients. Analyzing 12-channel lung sounds gives the advantages of assessing the entire lung obstructions.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/JBHI.2019.2931395en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectDeep belief networksen_US
dc.subjectRespiratoryDatabase@TRen_US
dc.subjectChronic obstructive pulmonary diseaseen_US
dc.subject.classificationComputer Science
dc.subject.classificationInformation Systems
dc.subject.classificationComputer Science
dc.subject.classificationInterdisciplinary Applications
dc.subject.classificationMathematical & Computational Biology
dc.subject.classificationMedical Informatics
dc.subject.classificationRespiratory Sounds | Auscultation | Stethoscopes
dc.subject.otherLung
dc.subject.otherDiseases
dc.subject.otherClassification algorithms
dc.subject.otherTransforms
dc.subject.otherTraining
dc.subject.otherFeature extraction
dc.subject.otherFrequency modulation
dc.subject.otherEmpirical mode decomposition
dc.subject.otherClassification
dc.subject.otherDiagnosis
dc.subject.otherBiological organs
dc.subject.otherClassification (of information)
dc.subject.otherLearning systems
dc.subject.otherPulmonary diseases
dc.subject.otherUnderwater acoustics
dc.subject.otherClassification parameters
dc.subject.otherClassification performance
dc.subject.otherComputerized analysis
dc.subject.otherHilbert Huang transforms
dc.subject.otherStatistical features
dc.subject.otherSupervised trainings
dc.subject.otherUnsupervised training
dc.subject.otherLearning algorithms
dc.subject.otherAccuracy
dc.subject.otherAirway obstruction
dc.subject.otherChronic obstructive lung disease
dc.subject.otherClinical assessment
dc.subject.otherControlled study
dc.subject.otherDeep belief network
dc.subject.otherDiagnostic test accuracy study
dc.subject.otherEmpirical mode decomposition
dc.subject.otherFalse positive result
dc.subject.otherFeature learning (machine learning)
dc.subject.otherFrequency modulation
dc.subject.otherHuman
dc.subject.otherLung function test
dc.subject.otherMultichannel lung sound
dc.subject.otherPredictive value
dc.subject.otherProcess optimization
dc.subject.otherReceiver operating characteristic
dc.subject.otherRespiratory tract disease assessment
dc.subject.otherSensitivity and specificity
dc.subject.otherSignal processing
dc.subject.otherSupervised machine learning
dc.titleDeep Learning on Computerized Analysis of Chronic Obstructive Pulmonary Diseaseen_US
dc.typearticleen_US
dc.relation.journalIEEE Journal of Biomedical and Health Informaticsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume24en_US
dc.identifier.issue5en_US
dc.identifier.startpage1344en_US
dc.identifier.endpage1350en_US
dc.relation.tubitakTUBITAK-116E190
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorAltan, Gökhan
dc.contributor.isteauthorKutlu, Yakup
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster