dc.contributor.author | Çalışkan, Abdullah | |
dc.contributor.author | Rencuzoğulları, Süleyman | |
dc.date.accessioned | 2021-06-09T08:08:15Z | |
dc.date.available | 2021-06-09T08:08:15Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.citation | Caliskan, A., Rencuzogullari, S. (2021). Transfer learning to detect neonatal seizure from electroencephalography signals
(2021) Neural Computing and Applications.
https://doi.org/10.1007/s00521-021-05878-y | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-021-05878-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/1744 | |
dc.description.abstract | This paper offers a solution to the problem of detecting neonatal seizures via a transfer learning technique that judiciously reconstructs pre-trained deep convolution neural networks (p-DCNN), including alexnet, resnet18, googlenet, densenet, and resnet50. Multichannel electroencephalography (EEG) signals are converted to colour images for feeding them as an input for the p-DCNN. A deep neural network (DNN) such as a convolution neural network (CNN) may be directly used instead of transfer learning-based networks. However, a DNN requires too much training data, too much training time, and a computer with high-performance computational capability. The DNN also has several user-supplied hyper-parameters that must be tuned to obtain desirable classification success. To prevent these drawbacks, we propose a transfer learning technique to solve the neonatal seizures detection problem. Results of simulations and the statistical analysis enable us to devise a transfer learning technique employed for seizure detection. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s00521-021-05878-y | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Transfer learning | en_US |
dc.subject | Deep neural networks | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Neonatal seizures | en_US |
dc.subject | Electroencephalography | en_US |
dc.subject.classification | Computer Science | |
dc.subject.classification | Artificial Intelligence | |
dc.subject.classification | Hypoxic Ischemic Encephalopathy | |
dc.subject.classification | Seizures | |
dc.subject.classification | Electroencephalography | |
dc.title | Transfer learning to detect neonatal seizure from electroencephalography signals | en_US |
dc.type | article | en_US |
dc.relation.journal | Neural Computing and Applications | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümü | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümü | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Çalışkan, Abdullah | |
dc.contributor.isteauthor | Rencuzoğulları, Süleyman | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |