Basit öğe kaydını göster

dc.contributor.authorSevim, Umur Korkut
dc.contributor.authorBilgiç, Hasan Hüseyin
dc.contributor.authorCansız, Ömer Faruk
dc.contributor.authorÖztürk, Murat
dc.contributor.authorAtiş, Cengiz Duran
dc.date.accessioned2021-06-14T08:19:22Z
dc.date.available2021-06-14T08:19:22Z
dc.date.issued2021en_US
dc.identifier.citationSevim, U.K., Bilgic, H.H., Cansiz, O.F., Ozturk, M., Atis, C.D. (2021). Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques. Construction and Building Materials, 271, art. no. 121584. https://doi.org/10.1016/j.conbuildmat.2020.121584en_US
dc.identifier.otherHydration
dc.identifier.otherMixtures
dc.identifier.otherConcrete
dc.identifier.otherSystems
dc.identifier.otherAlumina
dc.identifier.otherAluminum oxide
dc.identifier.otherFly ash
dc.identifier.otherForecasting
dc.identifier.otherFuzzy inference
dc.identifier.otherFuzzy neural networks
dc.identifier.otherHematite
dc.identifier.otherMachine learning
dc.identifier.otherMortar
dc.identifier.otherPredictive analytics
dc.identifier.otherSilica
dc.identifier.otherSilicon
dc.identifier.otherAdaptive network based fuzzy inference system
dc.identifier.otherCementitious composites
dc.identifier.otherChemical compositions
dc.identifier.otherIncentive effects
dc.identifier.otherIndependent values
dc.identifier.otherMachine learning techniques
dc.identifier.otherMulti-linear regression
dc.identifier.otherStrength prediction
dc.identifier.otherCompressive strength
dc.identifier.urihttps://doi.org/10.1016/j.conbuildmat.2020.121584
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1763
dc.description.abstractIn this study, it was proposed a novel prediction model to predict compressive strength of mortar samples having different properties. For this purpose, 8 different fly ashes were used in mortar mixture as a replacement of cement by weight. Mortars including different ashes were prepared with addition of 10%, 20%, 30% and 40% fly ash. Compressive strength of the produced mortar samples were evaluated at 1, 3, 7, 28, 90 and 365 days. Totally 196 test samples were produced and mechanically tested. The relation between compressive strength values (dependent value) and SiO2 + Al2O3 + Fe2O3 content, age, and fly ash replacement ratios (independent values) were predicted by machine learning techniques such as Artificial Neural Networks (ANN) and Adaptive-Network Based Fuzzy Inference Systems (ANFIS). The findings were compared with traditional statistical method Multi-Linear Regression (MLR) to prove proposed models. According to test results it has an incentive effect for future studies to know that GA based Anfis model produce better results to estimate compressive strength using chemical composition of fly as in terms of SiO2 + Al2O3 + Fe2O3, fly ashsubstation ratio in the mortar and age of the sample.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.conbuildmat.2020.121584en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFly ashen_US
dc.subjectSiO2 + Al2O3 + Fe2O3en_US
dc.subjectMortaren_US
dc.subjectRegression analysisen_US
dc.subjectANNen_US
dc.subjectCompressive strengthen_US
dc.subject.classificationConstruction & Building Technology
dc.subject.classificationEngineering
dc.subject.classificationCivil
dc.subject.classificationMaterials Science
dc.subject.classificationMultidisciplinary
dc.subject.classificationGeopolymers
dc.subject.classificationCoal Ash
dc.subject.classificationSlag Cement
dc.titleCompressive strength prediction models for cementitious composites with fly ash using machine learning techniquesen_US
dc.typearticleen_US
dc.relation.journalConstruction and Building Materialsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümü
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorSevim, Umur Korkut
dc.contributor.isteauthorBilgiç, Hasan Hüseyin
dc.contributor.isteauthorCansız, Ömer Faruk
dc.contributor.isteauthorÖztürk, Murat
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster