Basit öğe kaydını göster

dc.contributor.authorDoğan, Tunca
dc.contributor.authorAtaş, Heval
dc.contributor.authorJoshi, Vishal
dc.contributor.authorAtakan, Ahmet
dc.contributor.authorRifaioğlu, Ahmet Süreyya
dc.contributor.authorNalbat, Esra
dc.contributor.authorNightingale, Andrew
dc.contributor.authorSaidi, Rabie
dc.contributor.authorVolynkin, Vladimir
dc.contributor.authorZellner, Hermann
dc.contributor.authorAtalay, Rengül Çetin
dc.contributor.authorMartin, Maria
dc.contributor.authorAtalay, Volkan
dc.date.accessioned2021-07-09T06:18:03Z
dc.date.available2021-07-09T06:18:03Z
dc.date.issued2021en_US
dc.identifier.citationDoğan, T., Atas, H., Joshi, V., Atakan, A., Rifaioglu, A. S., Nalbat, E., Nightingale, A., Saidi, R., Volynkin, V., Zellner, H., Cetin-Atalay, R., Martin, M., & Atalay, V. (2021). CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations. Nucleic acids research, gkab543. Advance online publication. https://doi.org/10.1093/nar/gkab543en_US
dc.identifier.urihttps://doi.org/10.1093/nar/gkab543
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1859
dc.description.abstractSystemic analysis of available large-scale biological/biomedical data is critical for studying biological mechanisms, and developing novel and effective treatment approaches against diseases. However, different layers of the available data are produced using different technologies and scattered across individual computational resources without any explicit connections to each other, which hinders extensive and integrative multi-omics-based analysis. We aimed to address this issue by developing a new data integration/representation methodology and its application by constructing a biological data resource. CROssBAR is a comprehensive system that integrates large-scale biological/biomedical data from various resources and stores them in a NoSQL database. CROssBAR is enriched with the deep-learning-based prediction of relationships between numerous data entries, which is followed by the rigorous analysis of the enriched data to obtain biologically meaningful modules. These complex sets of entities and relationships are displayed to users via easy-to-interpret, interactive knowledge graphs within an open-access service. CROssBAR knowledge graphs incorporate relevant genes-proteins, molecular interactions, pathways, phenotypes, diseases, as well as known/predicted drugs and bioactive compounds, and they are constructed on-the-fly based on simple non-programmatic user queries. These intensely processed heterogeneous networks are expected to aid systems-level research, especially to infer biological mechanisms in relation to genes, proteins, their ligands, and diseases.en_US
dc.language.isoengen_US
dc.publisherOxford Academicen_US
dc.relation.isversionofhttps://doi.org/10.1093/nar/gkab543en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.classificationBiochemistry & Molecular Biology
dc.subject.classificationGene Ontology
dc.subject.classificationSemantic Similarity
dc.subject.classificationSPARQL
dc.subject.otherComputational methods
dc.subject.otherGenomics
dc.subject.otherMiscellaneous/other
dc.subject.otherAccess to information
dc.subject.otherCROssBAR database
dc.subject.otherData base
dc.subject.otherDeep learning
dc.subject.otherEnzyme mechanism
dc.subject.otherGene function
dc.subject.otherGenetic parameters
dc.subject.otherHuman
dc.subject.otherMedical research
dc.subject.otherMolecular interaction
dc.subject.otherNonhuman
dc.subject.otherNoSQL database
dc.subject.otherPrediction
dc.subject.otherProtein analysis
dc.subject.otherSignal transduction
dc.titleCROssBAR: comprehensive resource of biomedical relations with knowledge graph representationsen_US
dc.typearticleen_US
dc.relation.journalNucleic Acids Researchen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorRifaioğlu, Ahmet Süreyya
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster