Show simple item record

dc.contributor.authorAltan, Gökhan
dc.contributor.authorYayık, Apdullah
dc.contributor.authorKutlu, Yakup
dc.date.accessioned2021-12-21T13:29:38Z
dc.date.available2021-12-21T13:29:38Z
dc.date.issued2021en_US
dc.identifier.citationAltan, G., Yayık, A., Kutlu, Y. (2021). Deep Learning with ConvNet Predicts Imagery Tasks Through EEG. Neural Processing Letters, 53 (4), pp. 2917-2932. https://doi.org/10.1007/s11063-021-10533-7en_US
dc.identifier.urihttps://doi.org/10.1007/s11063-021-10533-7
dc.identifier.urihttps://hdl.handle.net/20.500.12508/1931
dc.description.abstractDeep learning with convolutional neural networks (ConvNets) has dramatically improved the learning capabilities of computer vision applications just through considering raw data without any prior feature extraction. Nowadays, there is a rising curiosity in interpreting and analyzing electroencephalography (EEG) dynamics with ConvNets. Our study focused on ConvNets of different structures, the efficiency of multiple machine learning algorithms with optimization on ConvNets, constructing for predicting imagined left and right movements on a subject-independent basis through raw EEG data. We adapted novel lower-upper triangularization based extreme learning machines (LuELM) to the ConvNet architecture. Results showed that recently advanced methods in machine learning field, i.e. adaptive moments and batch normalization together with dropout strategy, improved ConvNets predicting ability, outperforming that of conventional fully-connected neural networks with widely-used spectral features. The proposed prediction model achieved improvements in classification performances with the rates of 90.33%, 91.00%, and 89.67% for accuracy, recall, and specificity, respectively. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11063-021-10533-7en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectConvNetsen_US
dc.subjectDeep learningen_US
dc.subjectEEGen_US
dc.subjectPredicting imagined hand movementsen_US
dc.subject.classificationMotor Imagery
dc.subject.classificationBrain Computer Interface
dc.subject.classificationVisual Evoked Potentials
dc.subject.classificationComputer Science
dc.subject.otherNeural networks
dc.subject.otherConvolutional neural networks
dc.subject.otherDeep learning
dc.subject.otherElectroencephalography
dc.subject.otherElectrophysiology
dc.subject.otherForecasting
dc.subject.otherLearning systems
dc.subject.otherPredictive analytics
dc.subject.otherClassification performance
dc.subject.otherComputer vision applications
dc.subject.otherDifferent structure
dc.subject.otherExtreme learning machine
dc.subject.otherFully connected neural network
dc.subject.otherLearning capabilities
dc.subject.otherPrediction model
dc.subject.otherSpectral feature
dc.subject.otherLearning algorithms
dc.titleDeep Learning with ConvNet Predicts Imagery Tasks Through EEGen_US
dc.typearticleen_US
dc.relation.journalNeural Processing Lettersen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume53en_US
dc.identifier.issue4en_US
dc.identifier.startpage2917en_US
dc.identifier.endpage2932en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorAltan, Gökhan
dc.contributor.isteauthorKutlu, Yakup
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record