Basit öğe kaydını göster

dc.contributor.authorKarakulak, Tülay
dc.contributor.authorRifaioğlu, Ahmet Süreyya
dc.contributor.authorRodrigues, Joao P. G. L. M.
dc.contributor.authorKaraca, Ezgi
dc.date.accessioned2021-12-29T07:15:39Z
dc.date.available2021-12-29T07:15:39Z
dc.date.issued2021en_US
dc.identifier.citationKarakulak, T., Rifaioglu, A.S., Rodrigues, J.P.G.L.M., Karaca, E. (2021). Predicting the Specificity- Determining Positions of Receptor Tyrosine Kinase Axl. Frontiers in Molecular Biosciences, 8, art. no. 658906. https://doi.org/10.3389/fmolb.2021.658906en_US
dc.identifier.urihttps://doi.org/10.3389/fmolb.2021.658906
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2014
dc.description.abstractOwing to its clinical significance, modulation of functionally relevant amino acids in protein-protein complexes has attracted a great deal of attention. To this end, many approaches have been proposed to predict the partner-selecting amino acid positions in evolutionarily close complexes. These approaches can be grouped into sequence-based machine learning and structure-based energy-driven methods. In this work, we assessed these methods' ability to map the specificity-determining positions of Axl, a receptor tyrosine kinase involved in cancer progression and immune system diseases. For sequence-based predictions, we used SDPpred, Multi-RELIEF, and Sequence Harmony. For structure-based predictions, we utilized HADDOCK refinement and molecular dynamics simulations. As a result, we observed that (i) sequence-based methods overpredict partner-selecting residues of Axl and that (ii) combining Multi-RELIEF with HADDOCK-based predictions provides the key Axl residues, covered by the extensive molecular dynamics simulations. Expanding on these results, we propose that a sequence-structure-based approach is necessary to determine specificity-determining positions of Axl, which can guide the development of therapeutic molecules to combat Axl misregulation.en_US
dc.language.isoengen_US
dc.publisherFrontiers Media S.A.en_US
dc.relation.isversionof10.3389/fmolb.2021.658906en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAxlen_US
dc.subjectHADDOCKen_US
dc.subjectMolecular dynamicsen_US
dc.subjectProtein selectivityen_US
dc.subjectSequence analysisen_US
dc.subject.classificationBinding Sites
dc.subject.classificationWeb Server
dc.subject.classificationStructural Genomics
dc.subject.classificationBiochemistry & Molecular Biology
dc.subject.otherDetecting functional specificity
dc.subject.otherDetermining residues
dc.subject.otherEvolutionary conservation
dc.subject.otherSequence harmony
dc.subject.otherProtepns
dc.subject.otherConsurf
dc.subject.otherRegions
dc.subject.otherGas6
dc.titlePredicting the Specificity- Determining Positions of Receptor Tyrosine Kinase Axlen_US
dc.typearticleen_US
dc.relation.journalFrontiers in Molecular Biosciencesen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume8en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorRifaioğlu, Ahmet Süreyya
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster