Basit öğe kaydını göster

dc.contributor.authorÇiloğlu, Fatma Uysal
dc.contributor.authorÇalışkan, Abdullah
dc.contributor.authorSarıdağ, Ayşe Mine
dc.contributor.authorKılıç, İbrahim Halil
dc.contributor.authorTokmakçı, Mahmut
dc.contributor.authorKahraman, Mehmet
dc.contributor.authorAydın, Ömer
dc.date.accessioned2022-01-03T13:29:12Z
dc.date.available2022-01-03T13:29:12Z
dc.date.issued2021en_US
dc.identifier.citationCiloglu, F. U., Caliskan, A., Saridag, A. M., Kilic, I. H., Tokmakci, M., Kahraman, M., & Aydin, O. (2021). Drug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniques. Scientific reports, 11(1), 18444. https://doi.org/10.1038/s41598-021-97882-4en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2043
dc.description.abstractOver the past year, the world's attention has focused on combating COVID-19 disease, but the other threat waiting at the door-antimicrobial resistance should not be forgotten. Although making the diagnosis rapidly and accurately is crucial in preventing antibiotic resistance development, bacterial identification techniques include some challenging processes. To address this challenge, we proposed a deep neural network (DNN) that can discriminate antibiotic-resistant bacteria using surface-enhanced Raman spectroscopy (SERS). Stacked autoencoder (SAE)-based DNN was used for the rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) bacteria using a label-free SERS technique. The performance of the DNN was compared with traditional classifiers. Since the SERS technique provides high signal-to-noise ratio (SNR) data, some subtle differences were found between MRSA and MSSA in relative band intensities. SAE-based DNN can learn features from raw data and classify them with an accuracy of 97.66%. Moreover, the model discriminates bacteria with an area under curve (AUC) of 0.99. Compared to traditional classifiers, SAE-based DNN was found superior in accuracy and AUC values. The obtained results are also supported by statistical analysis. These results demonstrate that deep learning has great potential to characterize and detect antibiotic-resistant bacteria by using SERS spectral data.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.relation.isversionofhttps://doi.org/10.1038/s41598-021-97882-4en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.classificationScience & Technology - Other Topics
dc.subject.classificationRaman Spectroscopy
dc.subject.classificationBacterium
dc.subject.classification4-Mercaptophenylboronic Acid
dc.subject.otherDeep learning
dc.subject.otherDiscriminant analysis
dc.subject.otherHumans
dc.subject.otherMetal nanoparticles
dc.subject.otherMethicillin resistance
dc.subject.otherMicrobial sensitivity tests
dc.subject.otherNeural networks
dc.subject.otherComputer
dc.subject.otherSignal-To-Noise ratio
dc.subject.otherSilver
dc.subject.otherSpectrum analysis
dc.subject.otherRaman
dc.subject.otherStaphylococcus aureus
dc.subject.otherSupport vector machine
dc.subject.otherChemistry
dc.subject.otherClassification
dc.subject.otherDiscriminant analysis
dc.subject.otherDrug effect
dc.subject.otherDevelopment and aging
dc.subject.otherHuman
dc.subject.otherMethicillin resistance
dc.subject.otherMicrobial sensitivity test
dc.subject.otherRaman spectrometry
dc.subject.otherSignal noise ratio
dc.subject.otherStaphylococcus aureus
dc.subject.otherSupport vector machine
dc.titleDrug-resistant Staphylococcus aureus bacteria detection by combining surface-enhanced Raman spectroscopy (SERS) and deep learning techniquesen_US
dc.typearticleen_US
dc.relation.journalScientific Reportsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümüen_US
dc.identifier.volume11en_US
dc.identifier.issue1en_US
dc.relation.tubitak120F097
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÇalışkan, Abdullah
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster