dc.contributor.author | Cansız, Ömer Faruk | |
dc.contributor.author | Ünsalan, Kevser | |
dc.contributor.author | Üneş, Fatih | |
dc.date.accessioned | 2022-11-01T06:38:41Z | |
dc.date.available | 2022-11-01T06:38:41Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Cansiz, O.F., Unsalan, K., Unes, F. (2022). Prediction of CO2 emission in transportation sector by computational intelligence techniques. International Journal of Global Warming, 27 (3), pp. 271-283.
https://doi.org/10.1504/IJGW.2022.124202 | en_US |
dc.identifier.uri | https://doi.org/10.1504/IJGW.2022.124202 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/2181 | |
dc.description.abstract | Carbon footprint is considered the main cause of global warming. There are various studies on environmental sustainability carried out global scale. In this study, prediction models were developed for CO2 emissions in transportation sector. Artificial neural networks (ANN), simple membership functions and fuzzy rule generation technique (SMRGT), support vector machine (SVM) and adaptive neuro fuzzy inference system (ANFIS) methods, which are artificial intelligence techniques (AI), and also multiple linear regression (MLR), which is a statistical method, were used for the analysis. As a result of the comparison the best performance was seen in ANN model. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Inderscience Publishers | en_US |
dc.relation.isversionof | 10.1504/IJGW.2022.124202 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Carbon footprint | en_US |
dc.subject | CO2 emissions | en_US |
dc.subject | Green logistic | en_US |
dc.subject | Transport emissions | en_US |
dc.subject.classification | Divisia Index | |
dc.subject.classification | Logarithmic Mean | |
dc.subject.classification | Carbon Emissions | |
dc.subject.classification | Environmental Sciences & Ecology | |
dc.subject.classification | 4 Electrical Engineering, Electronics & Computer Science - Supply Chain & Logistics - Vehicle Routing Problem | |
dc.title | Prediction of CO2 emission in transportation sector by computational intelligence techniques | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of Global Warming | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi --
İnşaat Mühendisliği Bölümü | en_US |
dc.identifier.volume | 27 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 271 | en_US |
dc.identifier.endpage | 283 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Cansız, Ömer Faruk | |
dc.contributor.isteauthor | Ünsalan, Kevser | |
dc.contributor.isteauthor | Üneş, Fatih | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |