Basit öğe kaydını göster

dc.contributor.authorKhan, Waseem Ahmad
dc.contributor.authorMuhiuddin, Ghulam
dc.contributor.authorDuran, Uğur
dc.contributor.authorAl-Kadi, Deena
dc.date.accessioned2022-11-08T12:07:21Z
dc.date.available2022-11-08T12:07:21Z
dc.date.issued2022en_US
dc.identifier.citationKhan, W.A., Muhiuddin, G., Duran, U., Al-Kadi, D. (2022). On (p, q)-Sine and (p, q)-Cosine Fubini Polynomials. Symmetry, 14 (3), art. no. 527. https://doi.org/10.3390/sym14030527en_US
dc.identifier.issn2073-8994
dc.identifier.urihttps://doi.org/10.3390/sym14030527
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2215
dc.description.abstractIn recent years, (p, q)-special polynomials, such as (p, q)-Euler, (p, q)-Genocchi, (p, q)-Bernoulli, and (p, q)-Frobenius-Euler, have been studied and investigated by many mathematicians, as well physicists. It is important that any polynomial have explicit formulas, symmetric identities, summation formulas, and relations with other polynomials. In this work, the (p, q)-sine and (p, q)-cosine Fubini polynomials are introduced and multifarious abovementioned properties for these polynomials are derived by utilizing some series manipulation methods. (p, q)-derivative operator rules and (p, q)-integral representations for the (p, q)-sine and (p, q)-cosine Fubini polynomials are also given. Moreover, several correlations related to both the (p, q)-Bernoulli, Euler, and Genocchi polynomials and the (p, q)-Stirling numbers of the second kind are developed.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/sym14030527en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject(p, q)-numbersen_US
dc.subject(p, q)-sine polynomialsen_US
dc.subject(p, q)-cosine polynomialsen_US
dc.subject(p, q)-special polynomialsen_US
dc.subject(p, q)-Fubini polynomialsen_US
dc.subject(p, q) Stirling numbers of the second kinden_US
dc.subject.classificationEuler Polynomials
dc.subject.classificationBernoulli Numbers
dc.subject.classificationDegenerate
dc.subject.classificationScience & Technology - Other Topics
dc.subject.classificationMathematics - Functional Analysis - Statistical Convergence
dc.subject.otherNumbers
dc.titleOn (p, q)-Sine and (p, q)-Cosine Fubini Polynomialsen_US
dc.typearticleen_US
dc.relation.journalSymmetryen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mühendislik Temel Bilimleri Bölümüen_US
dc.identifier.volume14en_US
dc.identifier.issue3en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorDuran, Uğur
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster