dc.contributor.author | Özdemir, Ayşenur | |
dc.contributor.author | Genç, Gamze | |
dc.date.accessioned | 2022-11-10T13:30:40Z | |
dc.date.available | 2022-11-10T13:30:40Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Özdemir, A., Genç, G. (2022). A comprehensive comparative energy and exergy analysis in solar based hydrogen production
systems. International Journal of Hydrogen Energy, 47 (24), pp. 12189-12203.
https://doi.org/10.1016/j.ijhydene.2021.07.055 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2021.07.055 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/2230 | |
dc.description.abstract | In the presented paper, energy and exergy analysis is performed for thermochemical hydrogen (H2) production facility based on solar power. Thermal power used in thermochemical cycles and electricity production is obtained from concentrated solar power systems. In order to investigate the effect of thermochemical cycles on hydrogen production, three different cycles which are low temperature Mg–Cl, H2SO4 and UT-3 cycles are compared. Reheat-regenerative Rankine and recompression S–CO2 Brayton power cycles are considered to supply electricity needed in the Mg–Cl and H2SO4 thermochemical cycles. Furthermore, the effects of instant solar radiation and concentration ratio on the system performance are investigated. The integration of S–CO2 Brayton power cycle instead of reheat-regenerative Rankine enhances the system performance. The maximum exergy efficiency which is obtained in the system with Mg–Cl thermochemical and recompression S–CO2 Brayton power cycles is 27%. Although the energy and exergy efficiencies decrease with the increase of the solar radiation, they increase with the increase of the concentration ratio. The highest exergy destruction occurred in the solar energy unit. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | 10.1016/j.ijhydene.2021.07.055 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Solar energy | en_US |
dc.subject | Energy efficiency | en_US |
dc.subject | Exergy efficiency | en_US |
dc.subject | Hydrogen production | en_US |
dc.subject | Power cycle | en_US |
dc.subject | Thermochemical cycle | en_US |
dc.subject.classification | Hydrogen Production | |
dc.subject.classification | Solar Energy | |
dc.subject.classification | Exergy | |
dc.subject.classification | Chemistry | |
dc.subject.classification | Electrochemistry | |
dc.subject.classification | Energy & Fuels | |
dc.subject.classification | Engineering & Materials Science - Thermodynamics - Solar Air Heater | |
dc.subject.other | Hybrid thermochemical cycle | |
dc.subject.other | Performance assessment | |
dc.subject.other | Thermodynamic analysis | |
dc.subject.other | Integrated-system | |
dc.subject.other | CL cycle | |
dc.subject.other | Power | |
dc.subject.other | Multigeneration | |
dc.subject.other | Optimization | |
dc.subject.other | Electrolysis | |
dc.subject.other | Cells | |
dc.subject.other | Brayton cycle | |
dc.subject.other | Carbon dioxide | |
dc.subject.other | Energy efficiency | |
dc.subject.other | Exergy | |
dc.subject.other | Hydrogen production | |
dc.subject.other | Radiation effects | |
dc.subject.other | Rankine cycle | |
dc.subject.other | Solar power generation | |
dc.subject.other | Solar radiation | |
dc.subject.other | Temperature | |
dc.subject.other | Brayton power cycle | |
dc.subject.other | Concentration ratio | |
dc.subject.other | Energy | |
dc.subject.other | Energy and exergy analysis | |
dc.subject.other | Exergy efficiencies | |
dc.subject.other | Power cycle | |
dc.subject.other | Rankine | |
dc.subject.other | Recompression | |
dc.subject.other | Thermochemical cycles | |
dc.title | A comprehensive comparative energy and exergy analysis in solar based hydrogen production systems | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of Hydrogen Energy | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümü | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 24 | en_US |
dc.identifier.startpage | 12189 | en_US |
dc.identifier.endpage | 12203 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Özdemir, Ayşenur | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |
dc.relation.index | Web of Science Core Collection - Conference Proceedings Citation Index- Science | |