dc.contributor.author | Sharma, Sunil Kumar | |
dc.contributor.author | Khan, Waseem Ahmad | |
dc.contributor.author | Ryoo, Cheon-Seoung | |
dc.contributor.author | Duran, Uğur | |
dc.date.accessioned | 2022-11-21T06:47:45Z | |
dc.date.available | 2022-11-21T06:47:45Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Sharma, S.K., Khan, W.A., Ryoo, C.-S., Duran, U. (2022). Diverse Properties and Approximate Roots for a Novel Kinds of the (p,q)-Cosine and (p,q)-Sine Geometric Polynomials. Mathematics, 10 (15), art. no. 2709.
https://doi.org/10.3390/math10152709 | en_US |
dc.identifier.uri | https://doi.org/10.3390/math10152709 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/2289 | |
dc.description.abstract | Utilizing (p, q)-numbers and (p, q)-concepts, in 2016, Duran et al. considered (p, q)-Genocchi numbers and polynomials, (p, q)-Bernoulli numbers and polynomials and (p, q)-Euler polynomials and numbers and provided multifarious formulas and properties for these polynomials. Inspired and motivated by this consideration, many authors have introduced (p, q)-special polynomials and numbers and have described some of their properties and applications. In this paper, using the (p, q)-cosine polynomials and (p, q)-sine polynomials, we consider a novel kinds of (p, q)-extensions of geometric polynomials and acquire several properties and identities by making use of some series manipulation methods. Furthermore, we compute the (p, q)-integral representations and (p, q)-derivative operator rules for the new polynomials. Additionally, we determine the movements of the approximate zerosof the two mentioned polynomials in a complex plane, utilizing the Newton method, and we illustrate them using figures. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MDPI | en_US |
dc.relation.isversionof | 10.3390/math10152709 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | (p, q)-calculus | en_US |
dc.subject | Cosine polynomials | en_US |
dc.subject | (p, q)-geometric polynomials | en_US |
dc.subject | (p, q)-trigonometric functions | en_US |
dc.subject | Geometric polynomials | en_US |
dc.subject | Sine polynomials | en_US |
dc.subject.classification | Euler Polynomials | |
dc.subject.classification | Bernoulli Numbers | |
dc.subject.classification | Degenerate | |
dc.subject.classification | Mathematics | |
dc.subject.classification | Mathematics - Functional Analysis - Statistical Convergence | |
dc.subject.other | Numbers | |
dc.title | Diverse Properties and Approximate Roots for a Novel Kinds of the (p, q)-Cosine and (p, q)-Sine Geometric Polynomials | en_US |
dc.type | article | en_US |
dc.relation.journal | Mathematics | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Mühendislik Temel Bilimleri Bölümü | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 15 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Duran, Uğur | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |