dc.contributor.author | Altan, Gökhan | |
dc.contributor.author | Alkan, Sertan | |
dc.contributor.author | Baleanu, Dumitru | |
dc.date.accessioned | 2022-11-28T12:29:12Z | |
dc.date.available | 2022-11-28T12:29:12Z | |
dc.date.issued | 2022 | en_US |
dc.identifier.citation | Altan, G., Alkan, S., Baleanu, D. (2022). A novel fractional operator application for neural networks using proportional Caputo derivative. Neural Comput & Applic. https://doi.org/10.1007/s00521-022-07728-x | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-022-07728-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/2342 | |
dc.description.abstract | In machine learning models, one of the most popular models is artificial neural networks. The activation function is one of the important parameters of neural networks. In this paper, the sigmoid function is used as an activation function with a fractional derivative approach to minimize the convergence error in backpropagation and to maximize the generalization performance of neural networks. The proportional Caputo definition is considered a fractional derivative. We evaluated three neural network models on the usage of the proportional Caputo derivative. The results show that the proportional Caputo derivative approach has higher classification accuracy than traditional derivative models in backpropagation for neural networks with and without L2 regularization. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s00521-022-07728-x | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Activation function | en_US |
dc.subject | Fractional order | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Proportional caputo derivative | en_US |
dc.subject.classification | Fractional-Order System | |
dc.subject.classification | Chaotic Dynamics | |
dc.subject.classification | Memristors | |
dc.subject.classification | Computer Science | |
dc.subject.classification | Mathematics - Dynamical Systems & Time Dependence - Global Exponential Stability | |
dc.subject.other | Stability | |
dc.subject.other | Backpropagation | |
dc.subject.other | Chemical activation | |
dc.subject.other | Activation functions | |
dc.subject.other | Caputo derivatives | |
dc.subject.other | Convergence errors | |
dc.subject.other | Fractional derivatives | |
dc.subject.other | Fractional operators | |
dc.subject.other | Fractional order | |
dc.subject.other | Machine learning models | |
dc.subject.other | Neural-networks | |
dc.subject.other | Proportional caputo derivative | |
dc.subject.other | Sigmoid function | |
dc.subject.other | Neural networks | |
dc.title | A novel fractional operator application for neural networks using proportional Caputo derivative | en_US |
dc.type | article | en_US |
dc.relation.journal | Neural Computing and Applications | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Metalurji ve Malzeme Mühendisliği Bölümü | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Altan, Gökhan | |
dc.contributor.isteauthor | Alkan, Sertan | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |