Basit öğe kaydını göster

dc.contributor.authorTohma, Kadir
dc.contributor.authorOkur, Halil İbrahim
dc.contributor.authorKutlu, Yakup
dc.contributor.authorSertbaş, Ahmet
dc.date.accessioned2023-12-12T13:04:40Z
dc.date.available2023-12-12T13:04:40Z
dc.date.issued2023en_US
dc.identifier.citationTohma, K., Okur, H.I., Kutlu, Y., Sertbas, A. (2023). Sentiment Analysis in Turkish Question Answering Systems: An Application of Human-Robot Interaction. IEEE Access, 11, pp. 66522-66534.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2638
dc.description.abstractThe use of the sentiment analysis technique, which aims to extract emotions and thoughts from texts, has become a remarkable research topic today, where the importance of human-robot interaction is gradually increasing. In this study, a new hybrid sentiment analysis model is proposed using machine learning algorithms to increase emotional performance for Turkish question and answer systems. In this context, as a first, we apply text preprocessing steps to the Turkish question-answer-emotion dataset. Subsequently, we convert the preprocessed question and answer texts into text vector form using Pretrained Turkish BERT Model and two different word representation methods, TF-IDF and word2vec. Additionally, we incorporate pre-determined polarity vectors containing the positive and negative scores of words into the question-answer text vector. As a result of this study, we propose a new hybrid sentiment analysis model. We separate vectorized and expanded question-answer text vectors into training and testing data and train and test them with machine learning algorithms. By employing this previously unused method in Turkish question-answering systems, we achieve an accuracy value of up to 91.05% in sentiment analysis. Consequently, this study contributes to making human-robot interactions in Turkish more realistic and sensitive.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectNatural language processingen_US
dc.subjectQuestion answeringen_US
dc.subjectSentiment analysisen_US
dc.subject.classificationEmbedding
dc.subject.classificationNamed Entity Recognition
dc.subject.classificationEntailment
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Knowledge Engineering & Representation - Natural Language Processing
dc.subject.otherHuman robot interaction
dc.subject.otherIntelligent robots
dc.subject.otherLearning algorithms
dc.subject.otherLearning systems
dc.subject.otherMan machine systems
dc.subject.otherOnline systems
dc.subject.otherSearch engines
dc.subject.otherSentiment analysis
dc.subject.otherSupport vector machines
dc.subject.otherVectors
dc.subject.otherHumans-robot interactions
dc.subject.otherLanguage processing
dc.subject.otherNatural language processing
dc.subject.otherNatural languages
dc.subject.otherQuestion answering
dc.subject.otherQuestion answering (information retrieval)
dc.subject.otherSentiment analysis
dc.subject.otherSocial networking (online)
dc.subject.otherSupport vectors machine
dc.subject.otherData mining
dc.titleSentiment Analysis in Turkish Question Answering Systems: An Application of Human-Robot Interactionen_US
dc.typearticleen_US
dc.relation.journalIEEE Accessen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume11en_US
dc.identifier.startpage66522en_US
dc.identifier.endpage66534en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorTohma, Kadir
dc.contributor.isteauthorOkur, Halil İbrahim
dc.contributor.isteauthorKutlu, Yakup
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster