Basit öğe kaydını göster

dc.contributor.authorGüzel, Hasan
dc.contributor.authorÜneş, Fatih
dc.contributor.authorErginer, Merve
dc.contributor.authorKaya, Yunus Ziya
dc.contributor.authorTaşar, Bestami
dc.contributor.authorErginer, İbrahim
dc.contributor.authorDemirci, Mustafa
dc.date.accessioned2023-12-13T05:27:54Z
dc.date.available2023-12-13T05:27:54Z
dc.date.issued2023en_US
dc.identifier.citationGüzel, H., Üneş, F., Erginer, M., Kaya, Y.Z., Taşar, B., Erginer, İ., Demirci, M. (2023). A comparative study on daily evapotranspiration estimation by using various artificial intelligence techniques and traditional regression calculations. Mathematical Biosciences and Engineering, 20 (6), pp. 11328-11352.en_US
dc.identifier.issn1547-1063
dc.identifier.issn1551-0018
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2640
dc.description.abstractEvapotranspiration is an important parameter to be considered in hydrology. In the design of water structures, accurate estimation of the amount of evapotranspiration allows for safer designs. Thus, maximum efficiency can be obtained from the structure. In order to accurately estimate evapotranspiration, the parameters affecting evapotranspiration should be well known. There are many factors that affect evapotranspiration. Some of these can be listed as temperature, humidity in the atmosphere, wind speed, pressure and water depth. In this study, models were created for the estimation of the daily evapotranspiration amount by using the simple membership functions and fuzzy rules generation technique (fuzzy-SMRGT), multivariate regression (MR), artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS) and support vector regression (SMOReg) methods. Model results were compared with each other and traditional regression calculations. The ET amount was calculated empirically using the Penman-Monteith (PM) method which was taken as a reference equation. In the created models, daily air temperature (T), wind speed (WS), solar radiation (SR), relative humidity (H) and evapotranspiration (ET) data were obtained from the station near Lake Lewisville (Texas, USA). The coefficient of determination (R2), root mean square error (RMSE) and average percentage error (APE) were used to compare the model results. According to the performance criteria, the best model was obtained by Q-MR (quadratic-MR), ANFIS and ANN methods. The R2, RMSE, APE values of the best models were 0,991, 0,213, 18,881% for Q-MR; 0,996; 0,103; 4,340% for ANFIS and 0,998; 0,075; 3,361% for ANN, respectively. The Q-MR, ANFIS and ANN models had slightly better performance than the MLR, P-MR and SMOReg models.en_US
dc.language.isoengen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANFISen_US
dc.subjectANNen_US
dc.subjectEvapotranspirationen_US
dc.subjectFuzzy-SMRGTen_US
dc.subjectMRen_US
dc.subjectSMORegen_US
dc.subject.classificationPrediction
dc.subject.classificationFlood Forecasting
dc.subject.classificationWater Tables
dc.subject.classificationSocial Sciences - Climate Change - Flood Routing
dc.subject.otherAnimals
dc.subject.otherArtificial intelligence
dc.subject.otherHominidae
dc.subject.otherNeural networks
dc.subject.otherComputer
dc.subject.otherWater
dc.subject.otherWind
dc.subject.otherFuzzy inference
dc.subject.otherFuzzy neural networks
dc.subject.otherFuzzy systems
dc.subject.otherMean square error
dc.subject.otherMembership functions
dc.subject.otherRegression analysis
dc.subject.otherWind speed
dc.subject.otherAdaptive neuro-fuzzy inference
dc.subject.otherAdaptive neuro-fuzzy inference system
dc.subject.otherDaily evapotranspirations
dc.subject.otherFuzzy-SMRGT
dc.subject.otherModeling results
dc.subject.otherMultivariate regression
dc.subject.otherNeuro-fuzzy inference systems
dc.subject.otherRoot mean square errors
dc.subject.otherSMOReg
dc.subject.otherWind speed
dc.titleA comparative study on daily evapotranspiration estimation by using various artificial intelligence techniques and traditional regression calculationsen_US
dc.typearticleen_US
dc.relation.journalMathematical Biosciences and Engineeringen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume20en_US
dc.identifier.issue6en_US
dc.identifier.startpage11328en_US
dc.identifier.endpage11352en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorGüzel, Hasan
dc.contributor.isteauthorÜneş, Fatih
dc.contributor.isteauthorErginer, Merve
dc.contributor.isteauthorTaşar, Bestami
dc.contributor.isteauthorErginer, İbrahim
dc.contributor.isteauthorDemirci, Mustafa
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster