Basit öğe kaydını göster

dc.contributor.authorÜnsalan, Kevser
dc.contributor.authorBankir, Müzeyyen Balçıkanlı
dc.contributor.authorCansız, Ömer Faruk
dc.date.accessioned2023-12-18T07:11:54Z
dc.date.available2023-12-18T07:11:54Z
dc.date.issued2023en_US
dc.identifier.citationUnsalan, K., Balcikanli Bankir, M., Cansiz, O.F. (2023). Pull-out capacity prediction of sustainable cementitious composites with artificial intelligence and statistical methods. Structural Concrete, 24 (3), pp. 3824-3838. https://doi.org/10.1002/suco.202200275en_US
dc.identifier.issn1464-4177
dc.identifier.issn1751-7648
dc.identifier.urihttps://doi.org/10.1002/suco.202200275
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2683
dc.description.abstractConcrete is used with reinforcement in structures so adherence gains importance especially in fire scenarios. To contribute production of sustainable concrete, by-products like granulated blast furnace slag, fly ash, and silica fume were used, generally. In this study, to determine the elevated temperature resistance of by-product-added composites, samples were exposed to 250, 500, and 750°C and bonding behavior of composites was determined with pull-out test. Moreover, prediction models were developed to estimate concrete-reinforcement adherence values without experimentation and importantly before a fire. For the prediction models, considering the cross correlation, the mixture type, temperature, compressive strength, and flexural strength of concretes were selected as independent variables different from literature and pull-out capacity (POC) as dependent variable. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were used for prediction models. As a statistical method, multiple linear regression was used. The performances of pull out prediction models were compared according to coefficient of correlation (R), mean square error (MSE), and mean percentage error (MPE). Among the statistical models, Quadratic and pure quadratic performance surpassed the ANFIS model, which is a combination of ANN and fuzzy techniques. The best performance was obtained in ANN model with 99.85%, 3.65 kg, 3.1% for R, MSE and MPE, respectively. Therefore, ANN can provide a new applicable model to effectively predict POC of by-product-added cementituous composites under fire effect.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/suco.202200275en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBy-producten_US
dc.subjectPost-fire strengthen_US
dc.subjectPull-out capacityen_US
dc.subject.classificationEngineering & Materials Science - Concrete Science - Reinforced Concrete Sustainable Development Goals - Sustainable Cities and Communities
dc.subject.classificationComposite Beams
dc.subject.classificationStuds (Structural Members)
dc.subject.classificationSteel
dc.subject.otherBlast furnaces
dc.subject.otherCompressive strength
dc.subject.otherConcrete mixtures
dc.subject.otherFly ash
dc.subject.otherForecasting
dc.subject.otherFuzzy inference
dc.subject.otherFuzzy neural networks
dc.subject.otherFuzzy systems
dc.subject.otherLinear regression
dc.subject.otherSilica fume
dc.subject.otherSlags
dc.subject.otherFuzzy inference system
dc.subject.otherNeural-network
dc.subject.otherIdentification
dc.subject.otherAdaptive neuro-fuzzy inference
dc.subject.otherError percentage
dc.subject.otherMeans square errors
dc.subject.otherNeuro-fuzzy inference systems
dc.subject.otherPerformance
dc.subject.otherPost-fire
dc.subject.otherPost-fire strength
dc.subject.otherPrediction modelling
dc.subject.otherPull-out
dc.subject.otherPull-out capacity
dc.subject.otherMean square error
dc.titlePull-out capacity prediction of sustainable cementitious composites with artificial intelligence and statistical methodsen_US
dc.typearticleen_US
dc.relation.journalStructural Concreteen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.identifier.volume24en_US
dc.identifier.issue3en_US
dc.identifier.startpage3824en_US
dc.identifier.endpage3838en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜnsalan, Kevser
dc.contributor.isteauthorBankir, Müzeyyen Balçıkanlı
dc.contributor.isteauthorCansız, Ömer Faruk
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster