Basit öğe kaydını göster

dc.contributor.authorÇalık, Nurullah
dc.contributor.authorGüneş, Filiz
dc.contributor.authorKoziel, Slawomir
dc.contributor.authorPietrenko-Dabrowska, Anna
dc.contributor.authorBelen, Mehmet Ali
dc.contributor.authorMahouti, Peyman
dc.date.accessioned2023-12-19T06:11:12Z
dc.date.available2023-12-19T06:11:12Z
dc.date.issued2023en_US
dc.identifier.citationCalik, N., Güneş, F., Koziel, S., Pietrenko-Dabrowska, A., Belen, M.A., Mahouti, P. (2023). Deep-learning-based precise characterization of microwave transistors using fully-automated regression surrogates. Scientific Reports, 13 (1), art. no. 1445. https://doi.org/10.1038/s41598-023-28639-4en_US
dc.identifier.issn2045-2322
dc.identifier.urihttps://doi.org/10.1038/s41598-023-28639-4
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2696
dc.description.abstractAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning (DL), have been found suitable for this task by capitalizing on their flexibility and generality. Yet, rendering reliable transistor surrogates is hindered by a number of issues such as the need for finding good match between the input data and the network architecture and hyperparameters (number and sizes of layers, activation functions, data pre-processing methods), possible overtraining, etc. This work proposes a novel methodology, referred to as Fully Adaptive Regression Model (FARM), where all network components and processing functions are automatically determined through Tree Parzen Estimator. Our technique is comprehensively validated using three examples of microwave transistors and demonstrated to offer a competitive edge over the state-of-the-art methods in terms of modeling accuracy and handling the aforementioned issues pertinent to standard ANN-based surrogates.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.relation.isversionof10.1038/s41598-023-28639-4en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Semiconductor Technology - Power Amplifier
dc.subject.classificationMicrowave Filters
dc.subject.classificationAntenna
dc.subject.classificationSimulation Driven Design
dc.subject.otherArtificial neural-network
dc.subject.otherSoptimization
dc.subject.otherModel
dc.subject.otherAlgorithm
dc.subject.otherDesign
dc.subject.otherSignal
dc.subject.otherError
dc.titleDeep-learning-based precise characterization of microwave transistors using fully-automated regression surrogatesen_US
dc.typearticleen_US
dc.relation.journalScientific Reportsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume13en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorBelen, Mehmet Ali
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster