Basit öğe kaydını göster

dc.contributor.authorGüvenç, Mehmet Ali
dc.contributor.authorEren, Berkay
dc.contributor.authorBaşar, Gökhan
dc.contributor.authorMıstıkoğlu, Selçuk
dc.date.accessioned2023-12-22T06:22:41Z
dc.date.available2023-12-22T06:22:41Z
dc.date.issued2023en_US
dc.identifier.citationGuvenc, M.A., Eren, B., Basar, G., Mistikoglu, S. (2023). A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237 (20), pp. 4726-4738. https://doi.org/10.1177/09544062231153552en_US
dc.identifier.issn0954-4062
dc.identifier.issn2041-2983
dc.identifier.urihttps://doi.org/10.1177/09544062231153552
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2738
dc.description.abstractJoining of aluminum (Al) and copper (Cu) materials used in aerospace, automotive, chemistry, nuclear, electrical-electronic and energy sector with traditional fusion welding methods has some negative consequences. One of the major negativities is the serious decrease in the mechanical properties of the materials as a result of the high temperature that occurs during welding. Therefore, Friction Stir Welding (FSW) is of great importance in joining materials which are dissimilar and have low melting temperatures. In this study, a hybrid artificial neural network (ANN) model has been developed to predict the relationship between FSW parameters and ultimate tensile strength and to increase the prediction performance of ANN using heuristic algorithms by welding Al and Cu plates with FSW. The used hybrid approach consists of ANN and Particle Swarm Optimization/Teaching Learning Based Optimization techniques. The welding applications conducted with three different welding parameters. These parameters, rotation speed (525, 1025, 1525 rpm), welding speed (50, 75, 100 mm/min) and tool offset (0-0.75-1.5 mm) were determined as input parameters of the developed ANN model. Tensile and microhardness tests were applied to determine the mechanical properties in the experimental studies after welding process. In addition, Scanning Electron Microscope analysis and X-ray diffraction were used for microstructure and characterization of the fracture surface and the results obtained were interpreted and examined.en_US
dc.language.isoengen_US
dc.publisherSAGE Publicationsen_US
dc.relation.isversionof10.1177/09544062231153552en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAl-Cuen_US
dc.subjectArtificial neural networksen_US
dc.subjectFriction stir weldingen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectTeaching-learning based optimizationen_US
dc.subject.classificationAluminum
dc.subject.classificationBobbins
dc.subject.classificationWelded Joints
dc.subject.classificationEngineering & Materials Science - Metallurgical Engineering - Friction Stir Welding
dc.subject.otherAluminum alloys
dc.subject.otherBinary alloys
dc.subject.otherDissimilar materials
dc.subject.otherForecasting
dc.subject.otherFriction
dc.subject.otherHeuristic algorithms
dc.subject.otherHeuristic methods
dc.subject.otherHybrid materials
dc.subject.otherJoining
dc.subject.otherNeural networks
dc.subject.otherParticle swarm optimization (PSO)
dc.subject.otherResearch laboratories
dc.subject.otherScanning electron microscopy
dc.subject.otherSwarm intelligence
dc.subject.otherTensile strength
dc.subject.otherAluminum-cu
dc.subject.otherArtificial neural network modeling
dc.subject.otherFriction-stir-welding
dc.subject.otherHybrid metaheuristics
dc.subject.otherMetaheuristic optimization
dc.subject.otherParticle swarm
dc.subject.otherParticle swarm optimization
dc.subject.otherSwarm optimization
dc.subject.otherTeaching-learning-based optimizations
dc.subject.otherWelding parameters
dc.subject.otherFriction stir welding
dc.subject.otherAA6061
dc.subject.otherParameters
dc.subject.otherCopper
dc.subject.otherAlloys
dc.titleA new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materialsen_US
dc.typearticleen_US
dc.relation.journalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Scienceen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Havacılık ve Uzay Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümü
dc.identifier.volume237en_US
dc.identifier.issue20en_US
dc.identifier.startpage4726en_US
dc.identifier.endpage4738en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorGüvenç, Mehmet Ali
dc.contributor.isteauthorBaşar, Gökhan
dc.contributor.isteauthorMıstıkoğlu, Selçuk
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster