dc.contributor.author | Güvenç, Mehmet Ali | |
dc.contributor.author | Eren, Berkay | |
dc.contributor.author | Başar, Gökhan | |
dc.contributor.author | Mıstıkoğlu, Selçuk | |
dc.date.accessioned | 2023-12-22T06:22:41Z | |
dc.date.available | 2023-12-22T06:22:41Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.citation | Guvenc, M.A., Eren, B., Basar, G., Mistikoglu, S. (2023). A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 237 (20), pp. 4726-4738.
https://doi.org/10.1177/09544062231153552 | en_US |
dc.identifier.issn | 0954-4062 | |
dc.identifier.issn | 2041-2983 | |
dc.identifier.uri | https://doi.org/10.1177/09544062231153552 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/2738 | |
dc.description.abstract | Joining of aluminum (Al) and copper (Cu) materials used in aerospace, automotive, chemistry, nuclear, electrical-electronic and energy sector with traditional fusion welding methods has some negative consequences. One of the major negativities is the serious decrease in the mechanical properties of the materials as a result of the high temperature that occurs during welding. Therefore, Friction Stir Welding (FSW) is of great importance in joining materials which are dissimilar and have low melting temperatures. In this study, a hybrid artificial neural network (ANN) model has been developed to predict the relationship between FSW parameters and ultimate tensile strength and to increase the prediction performance of ANN using heuristic algorithms by welding Al and Cu plates with FSW. The used hybrid approach consists of ANN and Particle Swarm Optimization/Teaching Learning Based Optimization techniques. The welding applications conducted with three different welding parameters. These parameters, rotation speed (525, 1025, 1525 rpm), welding speed (50, 75, 100 mm/min) and tool offset (0-0.75-1.5 mm) were determined as input parameters of the developed ANN model. Tensile and microhardness tests were applied to determine the mechanical properties in the experimental studies after welding process. In addition, Scanning Electron Microscope analysis and X-ray diffraction were used for microstructure and characterization of the fracture surface and the results obtained were interpreted and examined. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SAGE Publications | en_US |
dc.relation.isversionof | 10.1177/09544062231153552 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Al-Cu | en_US |
dc.subject | Artificial neural networks | en_US |
dc.subject | Friction stir welding | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | Teaching-learning based optimization | en_US |
dc.subject.classification | Aluminum | |
dc.subject.classification | Bobbins | |
dc.subject.classification | Welded Joints | |
dc.subject.classification | Engineering & Materials Science - Metallurgical Engineering
- Friction Stir Welding | |
dc.subject.other | Aluminum alloys | |
dc.subject.other | Binary alloys | |
dc.subject.other | Dissimilar materials | |
dc.subject.other | Forecasting | |
dc.subject.other | Friction | |
dc.subject.other | Heuristic algorithms | |
dc.subject.other | Heuristic methods | |
dc.subject.other | Hybrid materials | |
dc.subject.other | Joining | |
dc.subject.other | Neural networks | |
dc.subject.other | Particle swarm optimization (PSO) | |
dc.subject.other | Research laboratories | |
dc.subject.other | Scanning electron microscopy | |
dc.subject.other | Swarm intelligence | |
dc.subject.other | Tensile strength | |
dc.subject.other | Aluminum-cu | |
dc.subject.other | Artificial neural network modeling | |
dc.subject.other | Friction-stir-welding | |
dc.subject.other | Hybrid metaheuristics | |
dc.subject.other | Metaheuristic optimization | |
dc.subject.other | Particle swarm | |
dc.subject.other | Particle swarm optimization | |
dc.subject.other | Swarm optimization | |
dc.subject.other | Teaching-learning-based optimizations | |
dc.subject.other | Welding parameters | |
dc.subject.other | Friction stir welding | |
dc.subject.other | AA6061 | |
dc.subject.other | Parameters | |
dc.subject.other | Copper | |
dc.subject.other | Alloys | |
dc.title | A new hybrid meta-heuristic optimization method for predicting UTS for FSW of Al/Cu dissimilar materials | en_US |
dc.type | article | en_US |
dc.relation.journal | Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Havacılık ve Uzay Mühendisliği Bölümü | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Makina Mühendisliği Bölümü | |
dc.identifier.volume | 237 | en_US |
dc.identifier.issue | 20 | en_US |
dc.identifier.startpage | 4726 | en_US |
dc.identifier.endpage | 4738 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Güvenç, Mehmet Ali | |
dc.contributor.isteauthor | Başar, Gökhan | |
dc.contributor.isteauthor | Mıstıkoğlu, Selçuk | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |