Basit öğe kaydını göster

dc.contributor.authorÜnal, Baki
dc.contributor.authorKüçükkocaoğlu, Güray
dc.contributor.authorKadıoğlu, Eyüp
dc.date.accessioned2023-12-25T10:54:07Z
dc.date.available2023-12-25T10:54:07Z
dc.date.issued2023en_US
dc.identifier.citationUnal, B., Kucukkocaoglu, G., Kadioglu, E. (2023). Intraday Seasonality and Volatility Pattern: An Explanation with Recurrence Quantification Analysis. International Journal of Bifurcation and Chaos, 33 (3), art. no. 2350027. https://doi.org/10.1142/S021812742350027Xen_US
dc.identifier.issn0218-1274
dc.identifier.issn1793-6551
dc.identifier.urihttps://doi.org/10.1142/S021812742350027X
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2792
dc.description.abstractThe Recurrence Quantification Analysis (RQA), a pattern recognition-based time series analysis method, can be successfully utilized for short, nonstationary, nonlinear, and chaotic time series. These RQA measures quantify several properties of time series, including predictability, regularity, stability, randomness, and complexity. In this regard, first, we analyzed the intraday seasonality with RQA and demonstrated how RQA measures change among the intraday periods by using 160 million row matched orders of 100 shares from Borsa Istanbul Equity Market between 2019M10 and 2020M02. We selected 50 stocks from the BIST50 Index group and 50 stocks from outside of the BIST100 Index group. Since these two share groups exhibit similar intraday RQA seasonality, our results are robust. Second, we explained intraday volatility with RQA measures and found a relationship between RQA measures and intraday volatility using a regression model.en_US
dc.language.isoengen_US
dc.publisherWorld Scientificen_US
dc.relation.isversionof10.1142/S021812742350027Xen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIntraday seasonalityen_US
dc.subjectIntraday volatilityen_US
dc.subjectIntraday volatility patternen_US
dc.subjectRealized volatilityen_US
dc.subjectRecurrence ploten_US
dc.subjectRecurrence quantification analysisen_US
dc.subject.classificationHigh-Frequency Trading
dc.subject.classificationProbability of Informed Trading
dc.subject.classificationFinancial Markets
dc.subject.classificationMathematics - Dynamical Systems & Time Dependence - Econophysics
dc.subject.otherTime-Series
dc.subject.otherDynamics
dc.subject.otherExchange
dc.subject.otherReturns
dc.subject.otherMarkets
dc.subject.otherPlots
dc.subject.otherOil
dc.subject.otherRun
dc.subject.otherPattern recognition
dc.subject.otherRegression analysis
dc.subject.otherAnalysis method
dc.subject.otherIntraday seasonality
dc.subject.otherIntraday volatility
dc.subject.otherIntraday volatility pattern
dc.subject.otherRealized volatility
dc.subject.otherRecurrence plot
dc.subject.otherRecurrence quantification analysis
dc.subject.otherSeasonality
dc.subject.otherShort time series
dc.subject.otherTime-series analysis
dc.subject.otherTime series analysis
dc.titleIntraday Seasonality and Volatility Pattern: An Explanation with Recurrence Quantification Analysisen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Bifurcation and Chaosen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Endüstri Mühendisliği Bölümüen_US
dc.identifier.volume33en_US
dc.identifier.issue3en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜnal, Baki
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster