dc.contributor.author | Ünal, Baki | |
dc.contributor.author | Küçükkocaoğlu, Güray | |
dc.contributor.author | Kadıoğlu, Eyüp | |
dc.date.accessioned | 2023-12-25T10:54:07Z | |
dc.date.available | 2023-12-25T10:54:07Z | |
dc.date.issued | 2023 | en_US |
dc.identifier.citation | Unal, B., Kucukkocaoglu, G., Kadioglu, E. (2023). Intraday Seasonality and Volatility Pattern: An Explanation with Recurrence Quantification Analysis. International Journal of Bifurcation and Chaos, 33 (3), art. no. 2350027.
https://doi.org/10.1142/S021812742350027X | en_US |
dc.identifier.issn | 0218-1274 | |
dc.identifier.issn | 1793-6551 | |
dc.identifier.uri | https://doi.org/10.1142/S021812742350027X | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/2792 | |
dc.description.abstract | The Recurrence Quantification Analysis (RQA), a pattern recognition-based time series analysis method, can be successfully utilized for short, nonstationary, nonlinear, and chaotic time series. These RQA measures quantify several properties of time series, including predictability, regularity, stability, randomness, and complexity. In this regard, first, we analyzed the intraday seasonality with RQA and demonstrated how RQA measures change among the intraday periods by using 160 million row matched orders of 100 shares from Borsa Istanbul Equity Market between 2019M10 and 2020M02. We selected 50 stocks from the BIST50 Index group and 50 stocks from outside of the BIST100 Index group. Since these two share groups exhibit similar intraday RQA seasonality, our results are robust. Second, we explained intraday volatility with RQA measures and found a relationship between RQA measures and intraday volatility using a regression model. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific | en_US |
dc.relation.isversionof | 10.1142/S021812742350027X | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Intraday seasonality | en_US |
dc.subject | Intraday volatility | en_US |
dc.subject | Intraday volatility pattern | en_US |
dc.subject | Realized volatility | en_US |
dc.subject | Recurrence plot | en_US |
dc.subject | Recurrence quantification analysis | en_US |
dc.subject.classification | High-Frequency Trading | |
dc.subject.classification | Probability of Informed Trading | |
dc.subject.classification | Financial Markets | |
dc.subject.classification | Mathematics
- Dynamical Systems & Time Dependence
- Econophysics | |
dc.subject.other | Time-Series | |
dc.subject.other | Dynamics | |
dc.subject.other | Exchange | |
dc.subject.other | Returns | |
dc.subject.other | Markets | |
dc.subject.other | Plots | |
dc.subject.other | Oil | |
dc.subject.other | Run | |
dc.subject.other | Pattern recognition | |
dc.subject.other | Regression analysis | |
dc.subject.other | Analysis method | |
dc.subject.other | Intraday seasonality | |
dc.subject.other | Intraday volatility | |
dc.subject.other | Intraday volatility pattern | |
dc.subject.other | Realized volatility | |
dc.subject.other | Recurrence plot | |
dc.subject.other | Recurrence quantification analysis | |
dc.subject.other | Seasonality | |
dc.subject.other | Short time series | |
dc.subject.other | Time-series analysis | |
dc.subject.other | Time series analysis | |
dc.title | Intraday Seasonality and Volatility Pattern: An Explanation with Recurrence Quantification Analysis | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of Bifurcation and Chaos | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Endüstri Mühendisliği Bölümü | en_US |
dc.identifier.volume | 33 | en_US |
dc.identifier.issue | 3 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Ünal, Baki | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |