Basit öğe kaydını göster

dc.contributor.authorSarıgül, Mehmet
dc.contributor.authorKaracan, Levent
dc.date.accessioned2023-12-28T10:29:57Z
dc.date.available2023-12-28T10:29:57Z
dc.date.issued2023en_US
dc.identifier.citationSarıgül, M., Karacan, L. (2023). Region contrastive camera localization. Pattern Recognition Letters, 169, pp. 110-117. https://doi.org/10.1016/j.patrec.2023.03.030en_US
dc.identifier.issn0167-8655
dc.identifier.issn1872-7344
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2023.03.030
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2836
dc.description.abstractVisual camera localization is a well-studied computer vision problem and has many applications. Recently, deep convolutional neural networks have begun to be utilized to solve six-degree-of-freedom (6-DoF) camera pose estimation via scene coordinate regression from a single RGB image and they outperform the traditional methods. However, recent works do not consider scene variations such as viewpoint, light, scale, etc due to the camera motion. In this work, we propose a region contrastive representation learning approach to alleviate these problems. The proposed approach maps image features from different camera views of the same 3D region to nearby points in the learned feature space. In contrast, it pushes visual features of other regions to distant points. Our method improves the existing camera localization methods and achieves state-of-the-art results on indoor 7-Scenes and outdoor Cambridge Landmarks datasets. Experimental results show that the proposed approach reduces the pose and angle errors and increases the average accuracy from 84.8% to 85.62% on the state-of-the-art baseline model. In addition, we perform an ablation study on a baseline network with different settings to demonstrate the efficiency of the proposed region contrastive camera localization method.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.patrec.2023.03.030en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCamera localizationen_US
dc.subjectContrastive learningen_US
dc.subjectPose estimationen_US
dc.subject.classificationImage Retrieval
dc.subject.classificationScene Recognition
dc.subject.classificationBag
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Robotics - Simultaneous Localization and Mapping
dc.subject.otherCameras
dc.subject.otherConvolutional neural networks
dc.subject.otherDeep neural networks
dc.subject.otherCamera localization
dc.subject.otherCamera pose estimation
dc.subject.otherComputer vision problems
dc.subject.otherContrastive learning
dc.subject.otherConvolutional neural network
dc.subject.otherLocalization method
dc.subject.otherPose-estimation
dc.subject.otherRGB images
dc.subject.otherSix-degree-of-freedom (6-DoF)
dc.subject.otherState of the art
dc.subject.otherDegrees of freedom (mechanics)
dc.titleRegion contrastive camera localizationen_US
dc.typearticleen_US
dc.relation.journalPattern Recognition Lettersen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume169en_US
dc.identifier.startpage110en_US
dc.identifier.endpage117en_US
dc.relation.tubitak120E447
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorKaracan, Levent
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster