Basit öğe kaydını göster

dc.contributor.authorYılmaz, Hasan
dc.contributor.authorŞahin, Mehmet
dc.date.accessioned2024-01-10T08:41:53Z
dc.date.available2024-01-10T08:41:53Z
dc.date.issued2023en_US
dc.identifier.citationYılmaz, H., Şahin, M. (2023). Solar panel energy production forecasting by machine learning methods and contribution of lifespan to sustainability. International Journal of Environmental Science and Technology, 20 (10), pp. 10999-11018. https://doi.org/10.1007/s13762-023-05110-5en_US
dc.identifier.issn1735-1472
dc.identifier.issn1735-2630
dc.identifier.urihttps://doi.org/10.1007/s13762-023-05110-5
dc.identifier.urihttps://hdl.handle.net/20.500.12508/2959
dc.description.abstractThe struggle to protect the atmosphere and the environment is increasing rapidly around the world. More work is needed to make energy production from renewable energy sources sustainable. The integration of energy with machine learning provides numerous advantages. In this study, the solar energy system, which is one of the main renewable energy sources, is considered. Support Vector Machine (SVM), K-nearest neighbor, Random Forest, Artificial Neural networks, Naive Bayes, Logistic Regression, Decision Tree, Gradient Boosting, Adaptive Boosting, and Stochastic Gradient Descent are used to forecast energy production. Forecast experiments are conducted in a region with high solar radiation and high temperature. Thus, there is an opportunity to examine overheated solar panels as well. A small-scale but adequate weather station is installed right next to the solar panel. Inputs such as temperature, pressure, humidity, and solar radiation obtained from the atmosphere with sensors are used. Obtained data are processed utilizing an Arduino microcontroller, data are recorded with C# software, and machine learning training is performed using Python programming. According to the results, the best performance is provided by SVM. This study provides guidance on whether solar energy systems investments are appropriate in the relevant region.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s13762-023-05110-5en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnergy forecastingen_US
dc.subjectMachine learningen_US
dc.subjectSolar panelsen_US
dc.subjectSustainable energyen_US
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Power Systems & Electric Vehicles - MPPT
dc.subject.otherAdaptive boosting
dc.subject.otherComputer software
dc.subject.otherDecision trees
dc.subject.otherForecasting
dc.subject.otherInvestments
dc.subject.otherLearning systems
dc.subject.otherNearest neighbor search
dc.subject.otherNeural networks
dc.subject.otherSolar concentrators
dc.subject.otherSolar energy
dc.subject.otherSolar panels
dc.subject.otherSolar radiation
dc.subject.otherStochastic systems
dc.subject.otherEnergy forecasting
dc.subject.otherEnergy production forecasting
dc.subject.otherEnergy productions
dc.subject.otherMachine learning methods
dc.subject.otherMachine-learning
dc.subject.otherRenewable energy source
dc.subject.otherSolar energy systems
dc.subject.otherSolar panels
dc.subject.otherSupport vectors machine
dc.subject.otherSustainable energy
dc.subject.otherSupport vector machines
dc.titleSolar panel energy production forecasting by machine learning methods and contribution of lifespan to sustainabilityen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Environmental Science and Technologyen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Enerji Sistemleri Mühendisliği Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Endüstri Mühendisliği Bölümü
dc.identifier.volume20en_US
dc.identifier.issue10en_US
dc.identifier.startpage10999en_US
dc.identifier.endpage11018en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorYılmaz, Hasan
dc.contributor.isteauthorŞahin, Mehmet
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster