Basit öğe kaydını göster

dc.contributor.authorÖzdemir, Merve Erkınay
dc.date.accessioned2024-08-12T07:25:51Z
dc.date.available2024-08-12T07:25:51Z
dc.date.issued2024en_US
dc.identifier.citationErkinay Ozdemir, M. (2024). A Novel Ensemble Wind Speed Forecasting System Based on Artificial Neural Network for Intelligent Energy Management. IEEE Access, 12, pp. 99672-99683.en_US
dc.identifier.issn2169-3536
dc.identifier.urihttps://ieeexplore.ieee.org/document/10601692
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3073
dc.description.abstractAccurate and consistent wind speed forecasting is vital for efficient energy management and the market economy. Wind speed is non-linear, non-stationary, and irregular, so it is very difficult to forecast. There are many forecasting methods currently in use; however, selecting and developing the most appropriate method for a particular region in wind speed forecasting is still a hot topic. This study presents a new and unique neural network-based ensemble system for forecasting wind speed, which is very difficult to predict but is directly related to the power generated by wind farms for individual and different sites. With the developed ensemble model, average mean absolute error, mean absolute percentage error and root mean square error values are obtained as 0.1269, 3.074%, 0.1596 respectively. Test results demonstrate significant contributions of the proposed system compared to existing statistical, heuristic and ensemble models, indicating that the developed model is a promising alternative for wind speed forecasting models. The obtained results show that this system is an effective and useful intelligent tool that can be used by various companies and government facilities that invest and operate in intelligent wind energy technologies.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/ACCESS.2024.3430830en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectEnsemble forecastingen_US
dc.subjectIntelligent energy managementen_US
dc.subjectWind energyen_US
dc.subjectWind speeden_US
dc.subject.classificationWind Power
dc.subject.classificationNeural Network
dc.subject.classificationWeather Forecasting
dc.subject.classificationComputer Science
dc.subject.classificationEngineering
dc.subject.classificationTelecommunications
dc.subject.otherEconomics
dc.subject.otherEnergy efficiency
dc.subject.otherEnergy management
dc.subject.otherErrors
dc.subject.otherInformation management
dc.subject.otherInvestments
dc.subject.otherMean square error
dc.subject.otherNeural networks
dc.subject.otherWeather forecasting
dc.subject.otherWind speed
dc.subject.otherEnsemble forecasting
dc.subject.otherEnsemble models
dc.subject.otherForecasting system
dc.subject.otherIntelligent energy management
dc.subject.otherMarket economies
dc.subject.otherPredictive models
dc.subject.otherWind forecasting
dc.subject.otherWind speed
dc.subject.otherWind speed forecasting
dc.subject.otherWind power
dc.subject.otherPower
dc.subject.otherPrediction
dc.titleA Novel Ensemble Wind Speed Forecasting System Based on Artificial Neural Network for Intelligent Energy Managementen_US
dc.typearticleen_US
dc.relation.journalIEEE Accessen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-8864-385Xen_US
dc.identifier.volume12en_US
dc.identifier.startpage99672en_US
dc.identifier.endpage99683en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÖzdemir, Merve Erkınay
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster