Basit öğe kaydını göster

dc.contributor.authorOkur, Halil İbrahim
dc.contributor.authorTohma, Kadir
dc.contributor.authorSertbaş, Ahmet
dc.date.accessioned2024-08-12T11:24:42Z
dc.date.available2024-08-12T11:24:42Z
dc.date.issued2024en_US
dc.identifier.citationOkur, H.I., Tohma, K., Sertbas, A. (2024). Relational turkish text classification using distant supervised entities and relations. Computers, Materials & Continua, 79(2), 2209-2228. https://doi.org/10.32604/cmc.2024.050585en_US
dc.identifier.issn1546-2218
dc.identifier.issn1546-2226
dc.identifier.urihttps://doi.org/10.32604/cmc.2024.050585
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3076
dc.description.abstractText classification, by automatically categorizing texts, is one of the foundational elements of natural language processing applications. This study investigates how text classification performance can be improved through the integration of entity-relation information obtained from the Wikidata (Wikipedia database) database and BERTbased pre-trained Named Entity Recognition (NER) models. Focusing on a significant challenge in the field of natural language processing (NLP), the research evaluates the potential of using entity and relational information to extract deeper meaning from texts. The adopted methodology encompasses a comprehensive approach that includes text preprocessing, entity detection, and the integration of relational information. Experiments conducted on text datasets in both Turkish and English assess the performance of various classification algorithms, such as Support Vector Machine, Logistic Regression, Deep Neural Network, and Convolutional Neural Network. The results indicate that the integration of entity-relation information can significantly enhance algorithm performance in text classification tasks and offer new perspectives for information extraction and semantic analysis in NLP applications. Contributions of this work include the utilization of distant supervised entity-relation information in Turkish text classification, the development of a Turkish relational text classification approach, and the creation of a relational database. By demonstrating potential performance improvements through the integration of distant supervised entity-relation information into Turkish text classification, this research aims to support the effectiveness of text-based artificial intelligence (AI) tools. Additionally, it makes significant contributions to the development of multilingual text classification systems by adding deeper meaning to text content, thereby providing a valuable addition to current NLP studies and setting an important reference point for future research.en_US
dc.language.isoengen_US
dc.publisherTech Science Pressen_US
dc.relation.isversionof10.32604/cmc.2024.050585en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectDistant supervisionen_US
dc.subjectRelation extractionen_US
dc.subjectNERen_US
dc.subjectrelation extractionen_US
dc.subjectText classificationen_US
dc.subject.classificationWord Embedding
dc.subject.classificationNatural Language Processing Systems
dc.subject.classificationArtificial Intelligence
dc.subject.classificationComputer Science
dc.subject.classificationMaterials Science
dc.subject.otherClassification (of information)
dc.subject.otherConvolutional neural networks
dc.subject.otherDeep neural networks
dc.subject.otherEmbeddings
dc.subject.otherNatural language processing systems
dc.subject.otherSemantics
dc.subject.otherSupport vector machines
dc.subject.otherDeep learning
dc.subject.otherDistant supervision
dc.subject.otherMachine-learning
dc.subject.otherNamed entity recognition
dc.subject.otherNatural language processing applications
dc.subject.otherNatural languages
dc.subject.otherRelation extraction
dc.subject.otherRelation information
dc.subject.otherText classification
dc.subject.otherTurkish texts
dc.subject.otherIntegration
dc.titleRelational Turkish Text Classification Using Distant Supervised Entities and Relationsen_US
dc.typearticleen_US
dc.relation.journalComputers, Materials and Continuaen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume79en_US
dc.identifier.issue2en_US
dc.identifier.startpage2209en_US
dc.identifier.endpage2228en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorOkur, Halil İbrahim
dc.contributor.isteauthorTohma, Kadir
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster