Basit öğe kaydını göster

dc.contributor.authorÖzer, Zafer
dc.contributor.authorAkdoğan, Volkan
dc.contributor.authorWang, Lulu
dc.contributor.authorKaraaslan, Muharrem
dc.date.accessioned2025-01-09T08:32:21Z
dc.date.available2025-01-09T08:32:21Z
dc.date.issued2024en_US
dc.identifier.citationÖzer, Z., Akdoğan, V., Wang, L. et al. (2024). Graphene-Based Tunable Metamaterial Absorber for Terahertz Sensing Applications. Plasmonics. https://doi.org/10.1007/s11468-024-02249-wen_US
dc.identifier.issn1557-1955
dc.identifier.issn1557-1963
dc.identifier.urihttps://doi.org/10.1007/s11468-024-02249-w
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3125
dc.description.abstractTerahertz (THz) absorbers, vital in advanced materials and photonics, manipulate electromagnetic waves within the 0.1 to 10 THz frequency range. These absorbers, crafted from nanostructures and metamaterials, offer applications in imaging, sensing, and communications. Diverse absorber strategies, including metamaterial-based, plasmonic, graphene-based, and photonic crystal, exploit unique physical phenomena for exceptional THz absorption. The evolution of these absorbers is propelled by advancements in fabrication techniques and computational modeling. Graphene, a two-dimensional carbon material, stands out for terahertz applications with broadband absorption, ultrafast response time, and tunability. This study presents two model graphene-based THz absorbers, designed and simulated using finite element method (FEM). The first model, in the mid-infrared range (6 to 14 μm), finds applications in thermal imaging, remote sensing, and spectroscopy. The second model, in the far-infrared range (1 to 14 THz), is versatile for spectroscopy, imaging, communication, and sensing. Key contributions include a meta-atom with the smallest footprint, a practical absorber design, and tunability through the graphene layer’s chemical potential. Numerical analysis and simulations demonstrate effective absorption, and sensitivity analysis shows the impact of analyte refractive index and thickness on sensing performance. Model 2, focusing on tunable graphene absorbers, exhibits remarkable absorption characteristics, achieving tunable absorptivity from 3 to 99.5%. In conclusion, this research advances the field of tunable THz absorbers, showcasing potential in diverse applications. The proposed designs, leveraging graphene and innovative configurations, open avenues for efficient and flexible terahertz technology.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11468-024-02249-wen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAbsorberen_US
dc.subjectGrapheneen_US
dc.subjectTerahertzen_US
dc.subject.classificationMetamaterial
dc.subject.classificationResonator
dc.subject.classificationGraphene
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Wireless Technology - Metamaterials
dc.subject.classificationNanoscience & Nanotechnology
dc.subject.classificationMaterials Science, Multidisciplinary
dc.titleGraphene-Based Tunable Metamaterial Absorber for Terahertz Sensing Applicationsen_US
dc.typearticleen_US
dc.relation.journalPlasmonicsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorKaraaslan, Muharrem
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster