Show simple item record

dc.contributor.authorSezer, Şükrü İlke
dc.contributor.authorAhn, Sung Il
dc.contributor.authorAkyüz, Emre
dc.contributor.authorKurt, Rafet Emek
dc.contributor.authorGardoni, Paolo
dc.date.accessioned2025-01-09T11:51:29Z
dc.date.available2025-01-09T11:51:29Z
dc.date.issued2024en_US
dc.identifier.citationSezer, S.I., Ahn, S.I., Akyuz, E., Kurt, R.E., Gardoni, P. (2024). A hybrid human reliability analysis approach for a remotely-controlled maritime autonomous surface ship (MASS- degree 3) operation. Applied Ocean Research, 147, art. no. 103966. https://doi.org/10.1016/j.apor.2024.103966en_US
dc.identifier.issn0141-1187
dc.identifier.issn1879-1549
dc.identifier.urihttps://doi.org/10.1016/j.apor.2024.103966
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3128
dc.description.abstractMaritime autonomous surface ships (MASS) are one of the hot topics in maritime transportation even though they bring many challenges in terms of safety, security, and environment. This paper tackles the safety-related challenges of remotely controlled ships without seafarers on board but controlled at the shore. In this context, the reliability of the operator is of paramount importance for safe and efficient MASS operation. This paper performs systematic human reliability analysis for the operator of MASS (for degree 3) under the Bayesian belief network (BBN) and evidential reasoning (ER)- cognitive reliability and error analysis method (CREAM) approach. In the model, BBN is capable of determining the probability distribution of Contextual Control Modes in CREAM, while ER tackles the uncertainty and subjectivity of expert judgments. The outcome of the paper shows that the human reliability for remote control MASS operation is 8.88E-01. Besides its robust theoretical background, the paper will provide the utmost contributions to operators, managers, safety inspectors, and ship owners of MASS for safer and reliable operationsen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.apor.2024.103966en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutonomous shipen_US
dc.subjectBayesian belief networken_US
dc.subjectCREAMen_US
dc.subjectEvidential reasoningen_US
dc.subjectHuman reliabilityen_US
dc.subject.classificationNuclear Fuel
dc.subject.classificationReliability Analysis
dc.subject.classificationNuclear Power Plant
dc.subject.classificationEngineering, Ocean
dc.subject.classificationOceanography
dc.subject.otherBarium compounds
dc.subject.otherProbability distributions
dc.subject.otherReliability analysis
dc.subject.otherRemote control
dc.subject.otherShips
dc.subject.otherWaterway transportation
dc.subject.otherAnalysis method
dc.subject.otherAutonomous ship
dc.subject.otherCognitive error
dc.subject.otherCognitive reliability
dc.subject.otherCognitive reliability and error analyse method
dc.subject.otherEvidential reasoning
dc.subject.otherHuman reliability
dc.subject.otherHuman reliability analysis
dc.subject.otherShip operation
dc.subject.otherSurface ship
dc.subject.otherBayesian analysis
dc.subject.otherControl system
dc.subject.otherMaritime transportation
dc.subject.otherReliability analysis
dc.subject.otherTransportation safety
dc.subject.otherUnmanned vehicle
dc.titleA hybrid human reliability analysis approach for a remotely-controlled maritime autonomous surface ship (MASS- degree 3) operationen_US
dc.typearticleen_US
dc.relation.journalApplied Ocean Researchen_US
dc.contributor.departmentBarbaros Hayrettin Gemi İnşaatı ve Denizcilik Fakültesi -- Deniz Ulaştırma İşletme Mühendisliği Bölümüen_US
dc.identifier.volume147en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorSezer, Şükrü İlke
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record