Show simple item record

dc.contributor.authorBaşer, Tuğçe
dc.contributor.authorRifaioğlu, Ahmet Süreyya
dc.contributor.authorAtalay, Mehmet Volkan
dc.contributor.authorAtalay, Rengül Çetin
dc.date.accessioned2025-01-27T07:19:46Z
dc.date.available2025-01-27T07:19:46Z
dc.date.issued2024en_US
dc.identifier.citationBaser, T., Rifaioglu, A. S., Atalay, M. V., & Atalay, R. C. (2024). Drug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinoma. International Journal of Molecular Sciences, 25(17), 9392. https://doi.org/10.3390/ijms25179392en_US
dc.identifier.issn1661-6596
dc.identifier.issn1422-0067
dc.identifier.urihttps://doi.org/10.3390/ijms25179392
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3208
dc.description.abstractHepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, with a high mortality rate due to the limited therapeutic options. Systemic drug treatments improve the patient's life expectancy by only a few months. Furthermore, the development of novel small molecule chemotherapeutics is time-consuming and costly. Drug repurposing has been a successful strategy for identifying and utilizing new therapeutic options for diseases with limited treatment options. This study aims to identify candidate drug molecules for HCC treatment through repurposing existing compounds, leveraging the machine learning tool MDeePred. The Open Targets Platform, UniProt, ChEMBL, and Expasy databases were used to create a dataset for drug target interaction (DTI) predictions by MDeePred. Enrichment analyses of DTIs were conducted, leading to the selection of 6 out of 380 DTIs identified by MDeePred for further analyses. The physicochemical properties, lipophilicity, water solubility, drug-likeness, and medicinal chemistry properties of the candidate compounds and approved drugs for advanced stage HCC (lenvatinib, regorafenib, and sorafenib) were analyzed in detail. Drug candidates exhibited drug-like properties and demonstrated significant target docking properties. Our findings indicated the binding efficacy of the selected drug compounds to their designated targets associated with HCC. In conclusion, we identified small molecules that can be further exploited experimentally in HCC therapeutics. Our study also demonstrated the use of the MDeePred deep learning tool in in silico drug repurposing efforts for cancer therapeutics.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.isversionof10.3390/ijms25179392en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDrug candidateen_US
dc.subjectDrug repurposingen_US
dc.subjectHepatocellular carcinomaen_US
dc.subjectMachine learningen_US
dc.subjectMDeePreden_US
dc.subject.classificationLiver Tumor
dc.subject.classificationHepatocellular Carcinoma
dc.subject.classificationImmune Checkpoint Inhibitor
dc.subject.classificationChemistry, Multidisciplinary
dc.subject.classificationBiochemistry & Molecular Biology
dc.subject.classificationClinical & Life Sciences - Liver & Colon Cancer - Hepatocellular Carcinoma
dc.subject.otherAntineoplastic agents
dc.subject.otherCarcinoma hepatocellular
dc.subject.otherDrug repositioning
dc.subject.otherHumans
dc.subject.otherLiver neoplasms
dc.subject.otherMachine learning
dc.subject.otherMolecular docking simulation
dc.subject.otherPhenylurea compounds
dc.subject.otherPyridines
dc.subject.otherSorafenib
dc.subject.otherLenvatinib
dc.subject.otherRegorafenib
dc.subject.otherSorafenib
dc.subject.otherAntineoplastic agent
dc.subject.otherCarbanilamide derivative
dc.subject.otherPyridine derivative
dc.subject.otherRegorafenib
dc.subject.otherSorafenib
dc.titleDrug Repurposing Approach to Identify Candidate Drug Molecules for Hepatocellular Carcinomaen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of Molecular Sciencesen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.identifier.volume25en_US
dc.identifier.issue17en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorRifaioğlu, Ahmet Süreyya
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record