Basit öğe kaydını göster

dc.contributor.authorGürkan Kuntalp, Damla
dc.contributor.authorÖzcan, Nermin
dc.contributor.authorDüzyel, Okan
dc.contributor.authorKababulut, Fevzi Yasin
dc.contributor.authorKuntalp, Mehmet
dc.date.accessioned2025-01-30T05:45:37Z
dc.date.available2025-01-30T05:45:37Z
dc.date.issued2024en_US
dc.identifier.citationGürkan Kuntalp, D., Özcan, N., Düzyel, O., Kababulut, F. Y., & Kuntalp, M. (2024). A Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classification. Diagnostics (Basel, Switzerland), 14(19), 2244. https://doi.org/10.3390/diagnostics14192244en_US
dc.identifier.issn2075-4418
dc.identifier.urihttps://doi.org/10.3390/diagnostics14192244
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3219
dc.description.abstractThe correct diagnosis and early treatment of respiratory diseases can significantly improve the health status of patients, reduce healthcare expenses, and enhance quality of life. Therefore, there has been extensive interest in developing automatic respiratory disease detection systems. Most recent methods for detecting respiratory disease use machine and deep learning algorithms. The success of these machine learning methods depends heavily on the selection of proper features to be used in the classifier. Although metaheuristic-based feature selection methods have been successful in addressing difficulties presented by high-dimensional medical data in various biomedical classification tasks, there is not much research on the utilization of metaheuristic methods in respiratory disease classification. This paper aims to conduct a detailed and comparative analysis of six widely used metaheuristic optimization methods using eight different transfer functions in respiratory disease classification. For this purpose, two different classification cases were examined: binary and multi-class. The findings demonstrate that metaheuristic algorithms using correct transfer functions could effectively reduce data dimensionality while enhancing classification accuracy.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.isversionof10.3390/diagnostics14192244en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFeature selectionen_US
dc.subjectMetaheuristicsen_US
dc.subjectRespiratory disease classificationen_US
dc.subject.classificationRespiratory Sounds
dc.subject.classificationNeural Network
dc.subject.classificationAuscultation
dc.subject.classificationMedicine, General & Internal
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Digital Signal Processing - Phonocardiogram
dc.subject.otherControlled study
dc.subject.otherDeep learning
dc.subject.otherDisease classification
dc.subject.otherFeature selection
dc.subject.otherFemale
dc.subject.otherHuman
dc.subject.otherLearning algorithm
dc.subject.otherMajor clinical study
dc.subject.otherMale
dc.subject.otherMetaheuristics
dc.subject.otherProcess optimization
dc.subject.otherRespiratory tract disease
dc.titleA Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classificationen_US
dc.typearticleen_US
dc.relation.journalDiagnosticsen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Biyomedikal Mühendisliği Bölümüen_US
dc.identifier.volume14en_US
dc.identifier.issue19en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÖzcan, Nermin
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster