Basit öğe kaydını göster

dc.contributor.authorAltan, Gökhan
dc.contributor.authorNarlı, Süleyman Serhan
dc.date.accessioned2025-01-30T11:14:10Z
dc.date.available2025-01-30T11:14:10Z
dc.date.issued2024en_US
dc.identifier.citationAltan, G., & Narli, S. S. (2024). DeepCOVIDNet-CXR: deep learning strategies for identifying COVID-19 on enhanced chest X-rays. Biomedizinische Technik. Biomedical engineering, 10.1515/bmt-2021-0272. Advance online publication. https://doi.org/10.1515/bmt-2021-0272en_US
dc.identifier.issn0013-5585
dc.identifier.issn1862-278X
dc.identifier.urihttps://doi.org/10.1515/bmt-2021-0272
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3224
dc.description.abstractCOVID-19 is one of the recent major epidemics, which accelerates its mortality and prevalence worldwide. Most literature on chest X-ray-based COVID-19 analysis has focused on multi-case classification (COVID-19, pneumonia, and normal) by the advantages of Deep Learning. However, the limited number of chest X-rays with COVID-19 is a prominent deficiency for clinical relevance. This study aims at evaluating COVID-19 identification performances using adaptive histogram equalization (AHE) to feed the ConvNet architectures with reliable lung anatomy of airways. We experimented with balanced small-and large-scale COVID-19 databases using left lung, right lung, and complete chest X-rays with various AHE parameters. On multiple strategies, we applied transfer learning on four ConvNet architectures (MobileNet, DarkNet19, VGG16, and AlexNet). Whereas DarkNet19 reached the highest multi-case identification performance with an accuracy rate of 98.26% on the small-scale dataset, VGG16 achieved the best generalization performance with an accuracy rate of 95.04% on the large-scale dataset. Our study is one of the pioneering approaches that analyses 3615 COVID-19 cases and specifies the most responsible AHE parameters for ConvNet architectures in the multi-case classification.en_US
dc.language.isoengen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.isversionof10.1515/bmt-2021-0272en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive histogram equalizationen_US
dc.subjectChest X-rayen_US
dc.subjectConvNeten_US
dc.subjectCOVID-19en_US
dc.subjectDeep learningen_US
dc.subjectTransfer learningen_US
dc.subject.classificationComputer Assisted Tomography
dc.subject.classificationDeep Learning
dc.subject.classificationCOVID-19
dc.subject.classificationMedical Informatics
dc.subject.classificationEngineering, Biomedical
dc.subject.otherAdaptive histogram equalization
dc.subject.otherAdversarial machine learning
dc.subject.otherContrastive learning
dc.subject.otherDeep learning
dc.subject.otherFederated learning
dc.subject.otherLung cancer
dc.subject.otherAdaptive histogram equalization
dc.subject.otherAdaptive histograms
dc.subject.otherCase classification
dc.subject.otherChest X-ray
dc.subject.otherConvnet
dc.subject.otherDeep learning
dc.subject.otherHistogram equalizations
dc.subject.otherPerformance
dc.subject.otherSmall scale
dc.subject.otherTransfer learning
dc.titleDeepCOVIDNet-CXR: Deep learning strategies for identifying COVID-19 on enhanced chest X-raysen_US
dc.typearticleen_US
dc.relation.journalBiomedizinische Techniken_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorAltan, Gökhan
dc.contributor.isteauthorNarlı, Süleyman Serhan
dc.relation.indexWeb of Science - Scopus - PubMeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster