Show simple item record

dc.contributor.authorPalandöken, Merih
dc.contributor.authorBelen, Aysu
dc.contributor.authorTarı, Özlem
dc.contributor.authorMahouti, Peyman
dc.contributor.authorMahouti, Tarlan
dc.contributor.authorBelen, Mehmet Ali
dc.date.accessioned2025-02-11T11:33:27Z
dc.date.available2025-02-11T11:33:27Z
dc.date.issued2024en_US
dc.identifier.citationPalandöken, Merih, Belen, Aysu, Tari, Ozlem, Mahouti, Peyman, Mahouti, Tarlan, Belen, Mehmet A. (2024). Computationally Efficient Design Optimization of Multiband Antenna Using Deep Learning–Based Surrogate Models, International Journal of RF and Microwave Computer-Aided Engineering, 5442768. https://doi.org/10.1155/mmce/5442768en_US
dc.identifier.issn1096-4290
dc.identifier.issn1099-047X
dc.identifier.urihttps://doi.org/10.1155/mmce/5442768
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3255
dc.description.abstractIn this paper, deep learning-based data-driven surrogate modeling approach is proposed for enhancing cost-efficiency of multiband antenna design optimization. The proposed surrogate model-assisted design approach has achieved a computational cost reduction of almost 40% compared to the conventional direct electromagnetic solver-based design methodologies in case of single design example. As for the validation of the proposed method, the obtained optimal design parameters from the surrogate model are used to manufacture an antenna design. The obtained results from the experimental measurement are compared with counterpart results from the literature.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1155/mmce/5442768en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAntennaen_US
dc.subjectDeep learningen_US
dc.subjectMultibanden_US
dc.subjectOptimizationen_US
dc.subjectSurrogate modelen_US
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Wireless Technology - Antenna
dc.subject.otherVivaldi antenna
dc.titleComputationally Efficient Design Optimization of Multiband Antenna Using Deep Learning-Based Surrogate Modelsen_US
dc.typearticleen_US
dc.relation.journalInternational Journal of RF and Microwave Computer-Aided Engineeringen_US
dc.contributor.departmentİskenderun Meslek Yüksekokulu -- Hibrid ve Elektrikli Taşıtlar Teknolojisi Bölümüen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümü
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorBelen, Aysu
dc.contributor.isteauthorBelen, Mehmet Ali
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expandeden_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record