dc.contributor.author | Palandöken, Merih | |
dc.contributor.author | Belen, Aysu | |
dc.contributor.author | Tarı, Özlem | |
dc.contributor.author | Mahouti, Peyman | |
dc.contributor.author | Mahouti, Tarlan | |
dc.contributor.author | Belen, Mehmet Ali | |
dc.date.accessioned | 2025-02-11T11:33:27Z | |
dc.date.available | 2025-02-11T11:33:27Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Palandöken, Merih, Belen, Aysu, Tari, Ozlem, Mahouti, Peyman, Mahouti, Tarlan, Belen, Mehmet A. (2024). Computationally Efficient Design Optimization of Multiband Antenna Using Deep Learning–Based Surrogate Models, International Journal of RF and Microwave Computer-Aided Engineering, 5442768.
https://doi.org/10.1155/mmce/5442768 | en_US |
dc.identifier.issn | 1096-4290 | |
dc.identifier.issn | 1099-047X | |
dc.identifier.uri | https://doi.org/10.1155/mmce/5442768 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/3255 | |
dc.description.abstract | In this paper, deep learning-based data-driven surrogate modeling approach is proposed for enhancing cost-efficiency of multiband antenna design optimization. The proposed surrogate model-assisted design approach has achieved a computational cost reduction of almost 40% compared to the conventional direct electromagnetic solver-based design methodologies in case of single design example. As for the validation of the proposed method, the obtained optimal design parameters from the surrogate model are used to manufacture an antenna design. The obtained results from the experimental measurement are compared with counterpart results from the literature. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.relation.isversionof | 10.1155/mmce/5442768 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Antenna | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Multiband | en_US |
dc.subject | Optimization | en_US |
dc.subject | Surrogate model | en_US |
dc.subject.classification | Electrical Engineering, Electronics & Computer Science
- Wireless Technology
- Antenna | |
dc.subject.other | Vivaldi antenna | |
dc.title | Computationally Efficient Design Optimization of Multiband Antenna Using Deep Learning-Based Surrogate Models | en_US |
dc.type | article | en_US |
dc.relation.journal | International Journal of RF and Microwave Computer-Aided Engineering | en_US |
dc.contributor.department | İskenderun Meslek Yüksekokulu -- Hibrid ve Elektrikli Taşıtlar Teknolojisi Bölümü | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Elektrik-Elektronik Mühendisliği Bölümü | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Belen, Aysu | |
dc.contributor.isteauthor | Belen, Mehmet Ali | |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |