Basit öğe kaydını göster

dc.contributor.authorAvşar, Hasan
dc.contributor.authorSarıgül, Mehmet
dc.contributor.authorKaracan, Levent
dc.date.accessioned2025-02-13T05:35:54Z
dc.date.available2025-02-13T05:35:54Z
dc.date.issued2024en_US
dc.identifier.citationAvşar, H., Sarıgül, M., Karacan, L. (2024). Illuminate the night: lightweight fusion and enhancement model for extreme low-light burst images. Journal of Real-Time Image Processing, 21 (6), art. no. 185. https://doi.org/10.1007/s11554-024-01563-0en_US
dc.identifier.issn1861-8200
dc.identifier.issn1861-8219
dc.identifier.urihttps://doi.org/10.1007/s11554-024-01563-0
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3262
dc.description.abstractTaking photographs under low ambient light can be challenging due to the inability of camera sensors to gather sufficient light, resulting in dark images with increased noise and reduced image quality. Standard photography techniques and traditional enhancement methods often fail to provide satisfactory solutions for images captured under extremely low ambient light conditions. To address this problem, data-driven methods have been proposed to model complex non-linear relationships between extremely dark and long-exposure images. Recently, burst photography has become interested in improving single-image low-light image enhancement to provide more information about the scene. In this study, we propose a novel unified fusion and enhancement model inspired by recent advancements in learning-based burst image processing methods. Our model processes a burst set of raw input images across multiple scales to fuse complementary information and predict possible enhancements over the fused information, thereby producing images with longer exposure. Additionally, we introduce a new data augmentation technique, the amplification ratio scaling multiplier, for training to further improve generalization. Experimental results demonstrate that our model achieves state-of-the-art performance in the perceptual metric LPIPS while maintaining highly competitive distortion metrics PSNR and SSIM compared to existing low-light burst image enhancement techniques.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11554-024-01563-0en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBurst photographyen_US
dc.subjectDeep learningen_US
dc.subjectExtremely darken_US
dc.subjectExtremely low lighten_US
dc.subjectImage enhancementen_US
dc.subject.classificationComputer Science, Artificial Intelligence
dc.subject.classificationImaging Science & Photographic Technology
dc.subject.classificationDeep Learning
dc.subject.classificationConvolutional Neural Network
dc.subject.classificationImage Enhancement
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Computer Vision & Graphics - Image Enhancement
dc.subject.otherImage enhancement
dc.subject.otherImage fusion
dc.subject.otherAmbient light
dc.subject.otherBurst photography
dc.subject.otherCamera sensor
dc.subject.otherDark image
dc.subject.otherDeep learning
dc.subject.otherExtremely dark
dc.subject.otherExtremely low light
dc.subject.otherLight bursts
dc.subject.otherLong exposures
dc.subject.otherLow light
dc.subject.otherPhotography
dc.subject.otherHistogram equalization
dc.titleIlluminate the night: lightweight fusion and enhancement model for extreme low-light burst imagesen_US
dc.typearticleen_US
dc.relation.journalJournal of Real-Time Image Processingen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume21en_US
dc.identifier.issue6en_US
dc.relation.tubitak123E671
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorAvşar, Hasan
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster