dc.contributor.author | Fadel, Mohammed | |
dc.contributor.author | Raza, Nusrat | |
dc.contributor.author | Al-Gonah, Ahmed | |
dc.contributor.author | Duran, Uğur | |
dc.date.accessioned | 2025-02-13T07:41:51Z | |
dc.date.available | 2025-02-13T07:41:51Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Fadel, M., Raza, N., Al-Gonah, A., & Duran, U. (2024). Bivariate q-Laguerre–Appell polynomials and their applications. Applied Mathematics in Science and Engineering, 32(1). https://doi.org/10.1080/27690911.2024.2412545 | en_US |
dc.identifier.issn | 2769-0911 | |
dc.identifier.uri | https://doi.org/10.1080/27690911.2024.2412545 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/3265 | |
dc.description.abstract | Recently, the monomiality principle has been extended to q-polynomials, namely, the q-monomiality principle of q-Appell polynomials has been considered. Also, certain results including the monomiality properties of the q-Gould-Hopper polynomials are derived and applications of monomiality are explored for a few members of the q-Appell polynomial families. In this paper, the primary purpose of this paper is to define 2-variable q-Laguerre–Appell polynomials by applying the q-monomiality principle techniques and to study their quasi-monomial properties and applications. We provide some operational identities and quasi-monomial features. Also, we derive some q-differential equations of these polynomials. As applications, using the operational identity of 2-variable q-Laguerre–Appell polynomials we draw specific conclusions regarding several q-Laguerre–Appell polynomial families. Furthermore, we define the family of q-Laguerre-Sheffer polynomials by an operational approach and give some of its fundamental properties. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.relation.isversionof | 10.1080/27690911.2024.2412545 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | 2-variable q-Laguerre polynomials | en_US |
dc.subject | q-Appell polynomials | en_US |
dc.subject | q-dilatation operator | en_US |
dc.subject | q-monomility principle | en_US |
dc.subject.classification | Engineering, Multidisciplinary | |
dc.subject.classification | Mathematics, Interdisciplinary Applications | |
dc.subject.classification | Mathematics - Pure Maths - Stirling Numbers | |
dc.subject.other | Choquet integral | |
dc.subject.other | Mathematical operators | |
dc.subject.other | Q factor measurement | |
dc.subject.other | 2-variable q-laguerre polynomial | |
dc.subject.other | Appell polynomials | |
dc.subject.other | Laguerre | |
dc.subject.other | Laguerre's polynomials | |
dc.subject.other | Monomiality principles | |
dc.subject.other | Operational identities | |
dc.subject.other | Property | |
dc.subject.other | Q-appell polynomial | |
dc.subject.other | Q-dilatation operator | |
dc.subject.other | Q-monomility principle | |
dc.subject.other | Identities | |
dc.subject.other | Bernoulli | |
dc.subject.other | Euler | |
dc.subject.other | Zeros | |
dc.title | Bivariate q-Laguerre-Appell polynomials and their applications | en_US |
dc.type | article | en_US |
dc.relation.journal | Applied Mathematics in Science and Engineering | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Mühendislik Temel Bilimleri Bölümü | en_US |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 1 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Duran, Uğur | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |