Basit öğe kaydını göster

dc.contributor.authorFadel, Mohammed
dc.contributor.authorRaza, Nusrat
dc.contributor.authorAl-Gonah, Ahmed
dc.contributor.authorDuran, Uğur
dc.date.accessioned2025-02-13T07:41:51Z
dc.date.available2025-02-13T07:41:51Z
dc.date.issued2024en_US
dc.identifier.citationFadel, M., Raza, N., Al-Gonah, A., & Duran, U. (2024). Bivariate q-Laguerre–Appell polynomials and their applications. Applied Mathematics in Science and Engineering, 32(1). https://doi.org/10.1080/27690911.2024.2412545en_US
dc.identifier.issn2769-0911
dc.identifier.urihttps://doi.org/10.1080/27690911.2024.2412545
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3265
dc.description.abstractRecently, the monomiality principle has been extended to q-polynomials, namely, the q-monomiality principle of q-Appell polynomials has been considered. Also, certain results including the monomiality properties of the q-Gould-Hopper polynomials are derived and applications of monomiality are explored for a few members of the q-Appell polynomial families. In this paper, the primary purpose of this paper is to define 2-variable q-Laguerre–Appell polynomials by applying the q-monomiality principle techniques and to study their quasi-monomial properties and applications. We provide some operational identities and quasi-monomial features. Also, we derive some q-differential equations of these polynomials. As applications, using the operational identity of 2-variable q-Laguerre–Appell polynomials we draw specific conclusions regarding several q-Laguerre–Appell polynomial families. Furthermore, we define the family of q-Laguerre-Sheffer polynomials by an operational approach and give some of its fundamental properties.en_US
dc.language.isoengen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.isversionof10.1080/27690911.2024.2412545en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject2-variable q-Laguerre polynomialsen_US
dc.subjectq-Appell polynomialsen_US
dc.subjectq-dilatation operatoren_US
dc.subjectq-monomility principleen_US
dc.subject.classificationEngineering, Multidisciplinary
dc.subject.classificationMathematics, Interdisciplinary Applications
dc.subject.classificationMathematics - Pure Maths - Stirling Numbers
dc.subject.otherChoquet integral
dc.subject.otherMathematical operators
dc.subject.otherQ factor measurement
dc.subject.other2-variable q-laguerre polynomial
dc.subject.otherAppell polynomials
dc.subject.otherLaguerre
dc.subject.otherLaguerre's polynomials
dc.subject.otherMonomiality principles
dc.subject.otherOperational identities
dc.subject.otherProperty
dc.subject.otherQ-appell polynomial
dc.subject.otherQ-dilatation operator
dc.subject.otherQ-monomility principle
dc.subject.otherIdentities
dc.subject.otherBernoulli
dc.subject.otherEuler
dc.subject.otherZeros
dc.titleBivariate q-Laguerre-Appell polynomials and their applicationsen_US
dc.typearticleen_US
dc.relation.journalApplied Mathematics in Science and Engineeringen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- Mühendislik Temel Bilimleri Bölümüen_US
dc.identifier.volume32en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorDuran, Uğur
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster