dc.contributor.author | Khan, Waseem Ahmad | |
dc.contributor.author | Duran, Uğur | |
dc.contributor.author | Younis, Jihad | |
dc.contributor.author | Ryoo, Cheon Seoung | |
dc.date.accessioned | 2025-02-13T10:43:35Z | |
dc.date.available | 2025-02-13T10:43:35Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | Waseem Ahmad Khan, Ugur Duran, Jihad Younis & Cheon Seoung Ryoo (2024). On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling, Applied Mathematics in Science and Engineering, 32:1,
2297072
https://doi.org/10.1080/27690911.2023.2297072 | en_US |
dc.identifier.issn | 2769-0911 | |
dc.identifier.uri | https://doi.org/10.1080/27690911.2023.2297072 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12508/3267 | |
dc.description.abstract | In this work, we consider the degenerate Frobenius-Euler-Genocchi polynomials utilizing the degenerate exponential function and the degenerate Changhee-Frobenius-Euler-Genocchi polynomials utilizing the degenerate logarithm function. Then, we analyze some summation and addition formulas for these polynomials. In addition, we derive some correlations with degenerate Stirling numbers of both kinds and degenerate Frobenius-Euler polynomials. Moreover, we present difference and derivative operator rules for the generalized degenerate Frobenius-Euler-Genocchi polynomials. Lastly, we show certain zeros of both the degenerate Frobenius-Euler-Genocchi polynomials and the degenerate Changhee-Frobenius-Euler-Genocchi polynomials and provide their beautifully graphical representations. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.relation.isversionof | 10.1080/27690911.2023.2297072 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Degenerate Changhee-Frobenius-Genocchi-Euler polynomials | en_US |
dc.subject | Degenerate exponential function | en_US |
dc.subject | Degenerate Frobenius-Euler polynomials | en_US |
dc.subject | Degenerate Frobenius-Genocchi polynomials | en_US |
dc.subject | Degenerate Frobenius-Genocchi-Euler polynomials | en_US |
dc.subject | Degenerate logarithm function | en_US |
dc.subject.classification | Engineering, Multidisciplinary | |
dc.subject.classification | Mathematics, Interdisciplinary Applications | |
dc.subject.classification | Bernoulli Polynomial | |
dc.subject.classification | Stirling Number | |
dc.subject.classification | Generating Function | |
dc.subject.classification | Mathematics - Pure Maths - Stirling Numbers | |
dc.subject.other | Polynomials | |
dc.subject.other | Addition formula | |
dc.subject.other | Computer models | |
dc.subject.other | Degenerate changhee-frobenii-genocchi-euler polynomial | |
dc.subject.other | Degenerate exponential function | |
dc.subject.other | Degenerate frobenii-euler polynomial | |
dc.subject.other | Degenerate frobenii-genocchi polynomial | |
dc.subject.other | Degenerate frobenii-genocchi-euler polynomial | |
dc.subject.other | Degenerate logarithm function | |
dc.subject.other | Logarithm function | |
dc.subject.other | Summation formulae | |
dc.subject.other | Exponential functions | |
dc.title | On some extensions for degenerate Frobenius-Euler-Genocchi polynomials with applications in computer modeling | en_US |
dc.type | article | en_US |
dc.relation.journal | Applied Mathematics in Science and Engineering | en_US |
dc.contributor.department | Mühendislik ve Doğa Bilimleri Fakültesi -- Mühendislik Temel Bilimleri Bölümü | en_US |
dc.identifier.volume | 32 | en_US |
dc.identifier.issue | 1 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.isteauthor | Duran, Uğur | |
dc.relation.index | Web of Science - Scopus | en_US |
dc.relation.index | Web of Science Core Collection - Science Citation Index Expanded | |