Basit öğe kaydını göster

dc.contributor.authorÜn, Buse
dc.contributor.authorErdiş, Ercan
dc.contributor.authorAydın, Serkan
dc.contributor.authorGenç, Olcay
dc.contributor.authorAlboğa, Özge
dc.date.accessioned2025-02-25T06:04:22Z
dc.date.available2025-02-25T06:04:22Z
dc.date.issued2024en_US
dc.identifier.citationUn, B., Erdis, E., Aydınlı, S., Genc, O., Alboga, O. (2024). Forecasting the outcomes of construction contract disputes using machine learning techniques. Engineering, Construction and Architectural Management.en_US
dc.identifier.urihttps://doi.org/10.1108/ECAM-05-2023-0510
dc.identifier.urihttps://hdl.handle.net/20.500.12508/3270
dc.description.abstractPurposeThis study aims to develop a predictive model using machine learning techniques to forecast construction dispute outcomes, thereby minimizing economic and social losses and promoting amicable settlements between parties.Design/methodology/approachThis study develops a novel conceptual model incorporating project characteristics, root causes, and underlying causes to predict construction dispute outcomes. Utilizing a dataset of arbitration cases in T & uuml;rkiye, the model was tested using five machine learning algorithms namely Logistic Regression, Support Vector Machines, Decision Trees, K-Nearest Neighbors, and Random Forest in a Python environment. The performance of each algorithm was evaluated to identify the most accurate predictive model.FindingsThe analysis revealed that the Support Vector Machine algorithm achieved the highest prediction accuracy at 71.65%. Twelve significant variables were identified for the best model namely, work type, root causes, delays from a contractor, extension of time, different site conditions, poorly written contracts, unit price determination, penalties, price adjustment, acceptances, delay of schedule, and extra payment claims. The study's results surpass some existing models in the literature, highlighting the model's robustness and practical applicability in forecasting construction dispute outcomes.Originality/valueThis study is unique in its consideration of various contract, dispute, and project attributes to predict construction dispute outcomes using machine learning techniques. It uses a fact-based dataset of arbitration cases from T & uuml;rkiye, providing a robust and practical predictive model applicable across different regions and project types. It advances the literature by comparing multiple machine learning algorithms to achieve the highest prediction accuracy and offering a comprehensive tool for proactive dispute management.en_US
dc.language.isoengen_US
dc.publisherEmerald Publishingen_US
dc.relation.isversionof10.1108/ECAM-05-2023-0510en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCase analysisen_US
dc.subjectConstruction contractsen_US
dc.subjectConstruction disputesen_US
dc.subjectDispute resolutionen_US
dc.subjectMachine learningen_US
dc.subjectMulti-class classificationen_US
dc.subjectPrediction modelen_US
dc.subject.classificationElectrical Engineering, Electronics & Computer Science - Design & Manufacturing - Project Scheduling
dc.subject.classificationContract Law
dc.subject.classificationConstruction Industry
dc.subject.classificationDispute Resolution
dc.subject.otherAdversarial machine learning
dc.subject.otherContrastive learning
dc.subject.otherDecision trees
dc.subject.otherNearest neighbor search
dc.subject.otherPrediction models
dc.subject.otherSupport vector regression
dc.subject.otherCase analysis
dc.subject.otherConstruction contract
dc.subject.otherConstruction dispute
dc.subject.otherDispute resolution
dc.subject.otherMachine learning techniques
dc.subject.otherMachine-learning
dc.subject.otherMulti-class classification
dc.subject.otherPrediction modelling
dc.subject.otherPredictive models
dc.subject.otherRoot cause
dc.titleForecasting the outcomes of construction contract disputes using machine learning techniquesen_US
dc.typearticleen_US
dc.relation.journalEngineering, Construction and Architectural Managementen_US
dc.contributor.departmentMühendislik ve Doğa Bilimleri Fakültesi -- İnşaat Mühendisliği Bölümüen_US
dc.contributor.departmentMimarlık Fakültesi -- Mimarlık Bölümü
dc.contributor.departmentMimarlık Fakültesi -- Mimarlık Bölümü
dc.relation.tubitakTUBITAK-2211/A
dc.relation.tubitakTUBITAK-2211/C
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.isteauthorÜn, Buse
dc.contributor.isteauthorErdiş, Ercan
dc.contributor.isteauthorGenç, Olcay
dc.contributor.isteauthorAlboğa, Özge
dc.relation.indexWeb of Science - Scopusen_US
dc.relation.indexWeb of Science Core Collection - Science Citation Index Expanded
dc.relation.indexWeb of Science Core Collection - Social Sciences Citation Index


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster